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Abstract—As the next generation of diverse workloads like
autonomous driving and augmented/virtual reality evolves, com-
putation is shifting from cloud-based services to the edge, leading
to the emergence of a cloud-edge compute continuum. This con-
tinuum promises a wide spectrum of deployment opportunities
for workloads that can leverage the strengths of cloud (scalable
infrastructure, high reliability) and edge (energy efficient, low
latencies). Despite its promises, the continuum has only been stud-
ied in silos of various computing models, thus lacking strong end-
to-end theoretical and engineering foundations for computing and
resource management across the continuum. Consequently, devel-
opers resort to ad hoc approaches to reason about performance
and resource utilization of workloads in the continuum. In this
work, we conduct a first-of-its-kind systematic study of various
computing models, identify salient properties, and make a case
to unify them under a compute continuum reference architecture.
This architecture provides an end-to-end analysis framework
for developers to reason about resource management, workload
distribution, and performance analysis. We demonstrate the
utility of the reference architecture by analyzing two popular
continuum workloads, deep learning and industrial IoT. We
have developed an accompanying deployment and benchmarking
framework and first-order analytical model for quantitative rea-
soning of continuum workloads. The framework is open-sourced
and available at https://github.com/atlarge-research/continuum.

Index Terms—Compute continuum, reference architecture,
edge computing, resource management, offloading, benchmark

I. INTRODUCTION

Cloud computing is one of today’s most successful com-
puting paradigms [1]. Cloud developers can summon a large
fleet of servers and infrastructure services (storage, network,
resource managers), and deploy complex, scalable workloads
on them with a few clicks [2], [3]. Traditionally, workloads
are executed in the cloud or in a limited capacity at the user,
located on resource-constrained endpoint devices at the far
end of the network such as sensor nodes, smart devices, and
IoT devices [4]. To enable new generations of workloads with
strict performance and privacy requirements, the cloud-centric
view of computation is shifting outwards towards the edge,
close to users. Edge computing offers low latency, energy-
efficient data processing by processing data in-the-field, close
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Fig. 1. An overview of the compute continuum (key properties shown as
arrows at the bottom) with endpoints, edge servers, and cloud infrastructure.

to where it is generated using decentralized, heterogeneous,
and mobile computing devices often with limited resources.
Domains with edge workloads include the Internet of Things
(IoT) [5], self-driving vehicles [6], smart farming [7], smart
industry [8], mobile gaming [9], analytics [10], and machine
learning [11]. With edge computing connecting cloud and user,
workloads previously deployed as cloud-only or endpoint-only
are now distributed in compute, data, and state and across a
compute continuum [12] of cloud, edge, and endpoint devices,
leveraging the best of both worlds: the high-performance,
scalable network-storage infrastructure and high reliability of
clouds with low-latency, privacy-preserving computation of
edge. Figure 1 provides an overview of this continuum.

Though promising, the continuum also presents unique chal-
lenges to workload developers and infrastructure providers.
Unlike clouds, edge computing lacks standardization of devel-
opment guidelines and foundational infrastructure services like
resource managers, scalable storage, or automatic workflow
managers that help with workload deployments [13]–[16].
Hence, developers must decide by themselves how to manage

https://github.com/atlarge-research/continuum


Key insight: Existing computing models for task
offloading are often presented in isolation, while
there is significant overlap in concerns addressed by
these models. By considering cloud, edge, and end-
point computing models as part of a unified, con-
tinuous computing model—the compute continuum—
developers are no longer limited to the single set of
constraints from current isolated computing models.

resources, split workload, and offload computation with tasks
(either in parts or as a whole) that traditionally run in the
cloud to edge servers and endpoints [17]. However, making
such decisions is non-trivial as there is a large design space
of choices. For example, task offloading includes, but is not
limited to, offloading from cloud to edge [18], offloading from
edge to cloud [19], compute management among different
edge devices [20], and compute management between edge
and endpoint devices [17].

Computing models like fog, mist, or mobile cloud com-
puting typically address these choices by capturing pertinent
workload developments and deployment guidelines for a spe-
cific offloading model. As we will illustrate in §II, such
fragmented views lead to silos of knowledge and miss an
opportunity to develop an end-to-end reasoning framework
regarding workload splitting, infrastructure services, task of-
floading, and resource management. A further consequence of
such fragmentation is the lack of any deployment, analysis,
and benchmarking framework with strong theoretical and
engineering foundations that can help developers assess their
decisions’ quality (§VI). As a result, continuum workload de-
velopers make development and deployment decisions ad hoc,
thus creating complexity and a general confusion regarding
what is the compute continuum and what should a developer
or infrastructure provider know about it before developing or
supporting compute continuum-ready applications.

In this paper, we take a step back and systematically study
the evolution of the compute continuum and various associ-
ated computing models. Our study of 17 compute continuum
models reveals the primary insight that even though these
computing models are often presented in isolation, there is
a significant overlap in terms of concerns addressed, used
mechanisms, and application domains addressed by these dif-
ferent computing models. As a result, we synthesize common
characteristics addressed by these models and select five repre-
sentative models that each cover a distinct part of the compute
continuum design space (Table I): Mist computing [21], edge
computing [22], multi-access edge computing [23], fog com-
puting [24], and mobile cloud computing [25]. Thus, we make
a case that developers and infrastructure providers should
not consider cloud, edge, and endpoint computing models
in isolation but as parts of a unified, continuous computing
model, captured as the SPEC-RG compute continuum refer-

ence architecture1. The unified reference architecture identifies
the key building blocks of any continuum deployment and
associated key concerns. We map the computing models and
two related use cases (deep learning and industrial IoT) to
this reference architecture to demonstrate its completeness,
comprehensiveness, and usefulness.

The reference architecture also gives us a blueprint to design
and implement a workload deployment and benchmarking
framework by defining compute continuum components and
their responsibility split. The framework leverages virtual
machines (KVM) and container technologies (Kubernetes)
and allows a developer to configure various typical network
(bandwidth, latency, jitter, packet drops), storage (capacity,
bandwidth), and compute configurations (CPU type, speed,
number of cores, memory) found in the compute continuum.
Supporting these configurations with any number of machines
allows a developer to quickly explore the performance land-
scape of various compute continuum deployments in only
a few lines of code and collect performance statistics to
analyze whether a particular offloading model is suitable
for their needs. The performance reports from the deploy-
ment framework are verified using a first-order analytical
framework. The unique combination of a conceptual model
(the Reference Architecture) with practical (deployment and
benchmarking framework) and analytical (first-order model)
frameworks enables developers to reason about their compute
continuum workloads with strong theoretical and engineering
foundations — a feat that is not possible today.

Our key contributions in this paper include:
1) (survey) To the best of our knowledge, we present the

most comprehensive survey on computing models with
17 models, synthesize their salient properties, and identify
opportunities for unification (§II).

2) (conceptual) We make a case for the compute continuum
and propose a design of a unified reference architecture.
Our reference architecture is the first to consider the entire
edge-cloud compute continuum. We use this new architec-
ture to synthesize two domain-specific architectures for
deep learning and industrial IoT (§III).

3) (experimental) To aid compute continuum developers,
we present an open-source workload deployment and
benchmarking framework. We show how developers can
explore the large continuum design space in a few lines
of code to examine various trade-offs (§IV).

4) (analytical) We enhance and verify the performance
analysis capabilities of the framework by formulating
an analytical performance model for exploring workload
deployment scenarios in the continuum (§V).

1Established in 2011, the Cloud Group of the SPEC Research Group focuses
on general and specific performance issues associated with cloud operation,
from traditional to new performance metrics, from workload characterization
to modeling, from concepts to tools, from performance measurement processes
to benchmarks. The work presented here is part of a larger, long-term activity
within this group, focusing on understanding the systems principles of cloud
and edge computing. The activity has started in 2019 and has resulted in
several publications, which are available online with open-source artifacts. The
group agrees with this article’s publication under the current co-authorship.



TABLE I
COMPARISON OF KEY CHARACTERISTICS OF 5 COMPUTING MODELS FOR TASK OFFLOADING BETWEEN CLOUD, EDGE, AND ENDPOINT. MC: MIST

COMPUTING; EC: EDGE COMPUTING; MEC: MULTI-ACCESS EDGE COMPUTING; FC: FOG COMPUTING; MCC: MOBILE CLOUD COMPUTING.

Key Characteristic (KC) MC EC MEC FC MCC
KC1: Compute source Endpoint Endpoint Cloud Cloud Endpoint
KC2: Data source Endpoint Cloud, endpoint Endpoint Cloud, endpoint Endpoint
KC3: Offload target Endpoint Edge Edge Edge Cloud
KC4: Architecture Peer-to-peer Distributed Distributed Hierarchical Distributed
KC5: Offload service Compute, storage Compute Compute Compute, storage Compute, storage
KC6: Compute capacity Low Moderate Moderate Moderate to high High
KC7: Network latency Low Low Low Low to moderate High
KC8: Network type Wired, wireless Wired, wireless Wireless Wired, wireless Wired
KC9: Operator User User, cloud provider Network provider Cloud provider Cloud provider

Popular use case Peer-to-peer IoT Real-time data Mobile, network-aware Low latency cloud Compute- and storage-
processing processing data processing service provisioning intensive tasks

II. A CASE FOR THE UNIFIED CONTINUUM MODEL

Due to the historical and diverse nature of outside-the-
cloud computing environments, many detailed but selective
computing models have been developed to guide developers
and infrastructure providers in deploying and supporting their
workload. Each model has its assumptions on available in-
frastructure and workload demands, and therefore, finding the
right computing model for an application deployment requires
a careful analysis of characteristics desired by users and of-
fered by computing models. In this section, we first synthesize
key characteristics of interest to developers and infrastructure
providers, then list how various computing models deliver
these properties, and finally, make a case for unifying end-to-
end concerns. Past survey works in this field also analyze these
models but fall short of providing an end-to-end unification
argument [26]–[29].

A. Synthesizing Key Characteristics

We start by synthesizing and identifying 9 unique key
characteristics (KC) that a compute continuum developer or
infrastructure provider should know about (Table I). Based on
the computing model and the workload, some or all of these
key characteristics can be of interest to a developer or provider.
KC1. Compute source: shows where requests for computing

are generated. The source could be cloud, edge, or
endpoint, and is different from the offload target.

KC2. Data source: determines where the data is generated
or stored before offloading.

KC3. Offload target: identifies where computing operations
and data are offloaded to in the continuum.

KC4. Architecture: determines the structure of devices par-
ticipating in offloading. The options are P2P, distributed
(a cluster of devices in a single layer of the continuum),
or hierarchical with multiple sub-layers.

KC5. Offload service: captures the type of services being
offloaded, e.g., computing requests or data.

KC6. Compute capacity: captures the compute capacity of
the offload target. In a typical setup, endpoint devices
have low energy, power-efficient CPUs (e.g., mobile
phones, cameras), edge servers have moderate, and
cloud servers are the most powerful machines.

KC7. Network latency: determines how efficiently entities
involved in the continuum can communicate with each
other, measured from data source to offload target.

KC8. Network type: can be wired (Ethernet, USB) or wire-
less (WiFi, Bluetooth, cellular, WANs). The network
type also determines what kind of mobility a developer
can expect in the deployment.

KC9. Operator: identifies the stakeholder running the infras-
tructures and development of workloads.

B. Key Characteristics with Existing Computing Models

Having synthesized key characteristics, we now focus on
existing computing models and how they consider the afore-
mentioned characteristics. We study 17 unique computing
models in our survey that leverage a combination of cloud,
edge, and endpoint devices, and enable workload offloading
between these devices. Based on the amount of overlap (if the
model has been superseded or merged), and the current interest
(is part of active academic/industrial interest), we narrow down
the discussion to five specific models while giving a rationale
for the process.
1. Mist Computing is concerned with forming a peer-to-
peer (P2P) network of user-operated endpoint devices, where
resource-constrained and/or busy endpoints can offload work-
load to nearby endpoints with more aggregate processing
power or storage capacity [21]. Mist computing is a rep-
resentative of a larger group of P2P computing models for
endpoint devices such as mobile crowdsourcing [30], peer-to-
peer computing [31], mobile crowd computing [32], mobile
ad hoc cloud computing [33], and transparent computing [34],
with each having its assumption on how the P2P network is
formed, the goal of the offloading, and possible interaction
with a centralized cloud or edge component.
2. Edge Computing enables the offloading of computation
and related data from endpoints to a cluster of edge devices
through low-latency networks to enhance previous endpoint-
only applications. For applications that share data and state
between tenants, like federated learning and online gaming,
data can also flow from cloud to edge [35]. Related to
edge computing is edge-centric computing, which focuses on
applications with human interaction.



3. Multi-access Edge Computing: Previously known as mo-
bile edge computing [36], MEC is concerned with augmenting
cellular and wireless infrastructure (4G, 5G) with computing
capacity to process user data from multiple endpoints close
to users instead of in the cloud [23], [37]. Contrary to
edge computing, where edge devices are owned by users or
cloud providers, edge devices in MEC are exclusively owned
by network providers and standardized under the European
Telecommunications Standards Institute (ETSI).
4. Fog Computing extends cloud services to edge to accel-
erate former cloud-only applications by leveraging the edge’s
low latency to endpoints [5], [38]. Fog computing leverages
multiple hierarchical edge clusters: From resource-constrained
devices near users to micro data centers near the cloud,
providing a trade-off between compute capacity and network
latency. Offloading services to micro data centers is the focus
of cloudlet computing, a precursor of fog computing [17].
5. Mobile Cloud Computing: Endpoints offload compute
tasks and related data for workloads without strict latency
constraints directly to the cloud to benefit from the cloud’s
cheaper and more stable resources [25]. Even selected latency-
constrained applications can directly offload to the cloud as
the average latency between cloud and endpoint is decreasing
due to better networking infrastructure and more cloud data
centers [39]. Mobile grid computing is a precursor of mobile
cloud computing, leveraging grids instead of clouds [40].
In situ computing explicitly focuses on preprocessing data
on endpoint devices before offloading to reduce network
load [41]. Osmotic computing combines mobile cloud com-
puting and edge computing, advocating for a dynamic and
seamless offloading process to cloud or edge [22], [42].

C. A Case for the Unification

In the past sections, we have synthesized key characteristics
(what a developer should know) and identified how existing
computing models provide (or lack) guidelines for these key
characteristics for compute continuum workloads. Based on
this discussion, we make a case for the unification of different
computing models based on three primary arguments. First,
finding a suitable model now requires comparing requirements
from a particular workload to the features provided by the five
models (Table I) and selecting the best fit. This approach of
considering each model in isolation offers a restricted view of
the task offloading design space. For example, data processing
applications may require computing services in the edge and
storage services in the cloud [7]: Edge computing offers the
former, and mobile cloud computing offers the latter, but no
computing model explicitly offers these services combined.
This shows that choosing an existing computing model with
fixed characteristics for a particular workload deployment has
major limitations that create silos of knowledge, and hence,
confusion for users. Second, computing models often only
focus on compute/task management-related responsibilities.
However, in practice, data and runtime state management and
resource allocation with multi-workload/tenant situations are
equally important [13]. For example, mist computing gives
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Fig. 2. Reference architecture for the compute continuum. The computing
models are mapped to the parts of the architecture relevant to them.

guidelines regarding how to establish and push computation in
a P2P network of endpoint devices but provides little guidance
on how data sharing is done. Lastly, providing end-to-end
data provenance and privacy properties is challenging without
building an end-to-end view of the workload. For example, in
multi-access edge computing, where network providers own a
part of the infrastructure and resources (not the workload de-
velopers), it would necessitate cooperation with the providers
to ensure a secure resource allocation and isolated execution,
a property challenging even in cloud computing [43], [44].

To close the knowledge gaps, in this work, we propose to
take an ab initio approach for designing a unified continuum
computing model and an associated unified reference archi-
tecture in the next section.

III. THE SPEC-RG COMPUTE CONTINUUM
REFERENCE ARCHITECTURE

Having made a case for a unified computing model, we
present our unified reference architecture for the compute
continuum in Figure 2. A computing model typically has a
reference architecture that describes the components a com-
puting model operates on and the interactions between these
components. All five selected models have reference archi-
tectures, with the most prominent architectures listed in §VI.
The goal of building a unified reference architecture is to ab-
stract away the specifications of the underlying hardware and
peculiarities of specific workloads and discuss more broadly
the foundational building blocks of the compute continuum
regarding compute, data, and resource management.

A. Overview and Design Process

Overview: The SPEC-RG reference architecture consists of
three tiers of systems: cloud, edge, and endpoint, with their
associated components and responsibilities, as shown in Fig-
ure 2. The three-tier system is taken from the developer’s
view of compute offloading and data processing: endpoint
devices are the last connected components in the architecture
that create data streams for long-term storage and processing
in cloud data centers, located at the top of the architecture,



or require data hosted in the cloud for content delivery
networks [45] and applications with shared state [35]. In
between, the edge represents multiple hops of processing and
storage capabilities. In explaining the reference architecture,
we will borrow well-defined cloud-centric components and
extend them to include the expanded continuum. Lastly, we
show the utility of the proposed reference architecture by
mapping it into two concrete continuum workloads: machine
learning and industrial IoT in §III-E.
Design process: The primary requirement from a reference ar-
chitecture is that it should capture various deployment models
that we discussed in the previous section. We start by analyz-
ing and identifying commonalities and differences between the
five selected computing models and use the overlap between
the models as the basis of the architecture, with the differences
between the models becoming implementation details of the
components [28]. For example, all selected computing models
(some explicitly, others implicitly) use resource managers
to manage the complex stack of cloud, edge, and endpoint
resources and the networks connecting them, but the specific
implementation of these resource managers differs widely
between workload deployments. As such, resource managers
should be a core component of the architecture, while the
implementation of the resource manager should be an im-
plementation detail of the component. By creating a unified
architecture for the edge continuum, we present a single
platform for research into cloud, edge, and endpoint resources,
unifying previous research efforts and allowing exploration
in new research directions. We are the first to create such
a unified end-to-end architecture, extending previous work
which looked at computing models in isolation (§VI).

In the next sections, we discuss (i) the design of the archi-
tecture’s components; (ii) the rationale behind their position
in the reference architecture; and (iii) how to offer compute,
data, and resource management services.

B. Endpoint Components

Endpoints are the last hop of processing and connectivity
to users with the following key features: First, they often
are data sources, e.g., user input through online gaming [9],
environment sensing [7], or video surveillance [11]. Second,
they are resource and energy-constrained, e.g., IoT devices
such as sensors, and embedded systems [17]. Lastly, they
may be mobile, e.g., smartphones, where location-sensitive
services must migrate to the device’s location [46]. To support
the unified computing model, we have split up endpoint
responsibilities into the following four components:
P1. Data Preprocessing: As data generators, we identify
endpoints to be perfectly positioned to run early workload-
specific data preprocessing logic such as filtering, tracking,
aggregation, etc. This preprocessing aims to reduce the amount
of data pushed to edge and cloud servers. Preprocessing
capabilities can be built-in as a hardware accelerator or a
software component available for use in high-level applica-
tions, thus freeing them to do low-level data preparations. For
example, in video surveillance, camera endpoints can support

built-in object tracking or face detection [47], as can be the
case for self-driving vehicles [6]. The key decisions here for
developers are: (1) does data need preprocessing; (2) can it
be preprocessed at the endpoint itself, or must it be offloaded;
(3) when and how to offload compute/data for preprocessing
and collect results; and (4) can preprocessing be helped with
hardware acceleration for energy efficiency.
P2. Application: Applications contain user-defined logic that
runs on the endpoint to process incoming data (from edge/-
cloud or post-preprocessing stage) and make decisions. Typical
logic in the application can be running heuristics, making
offloading decisions, monitoring performance metrics, and/or
triggering changes in the application deployments. For exam-
ple, an application can join a P2P network with other endpoints
to do mist computing or display model data rendered by cloud
servers in an online gaming setting (data flow from cloud to
endpoint). The key decisions here for developers are: (1) in
which direction compute and data offloading happens - P2P
or hierarchically to edge/cloud; (2) when and how to offload
compute/data for processing and collecting results; (3) what
are favorable conditions for offloading and how to quantify
them; and (4) how to reserve and allocate local (endpoint)
and further (edge, cloud) resources.
P3. Operating System and Resource Manager: In contrast to
edge/cloud servers, endpoints are typically single-tenant [48];
hence, OS-level resource managers (RMs) and multiplexers
are often enough to meet the workload needs. Common
examples of OS-level RMs are Android, iOS, TinyOS, and
QNX [49]. These RMs are optimized for deployed hardware
and scenarios such as the presence or absence of specific
hardware features (virtualization, secure enclaves), energy
management, high priority for user interactions, etc. The key
decisions here for developers are: (1) what kind of resources
does a workload need - CPU, memory, hardware accelerators,
networking capacity; (2) how to reserve/allocate resources
using the OS-level RMs; and (3) do RMs meet the functional
(performance SLAs) and non-functional (cost, fault handling,
data corruption) requirements of the workload?
P4. Infrastructure: Infrastructure includes all physical com-
puting, memory, network, and storage resources available to
the operating system. These resources can be general purpose
(e.g., smartphones) or specialized for mobility, energy effi-
ciency, etc. (e.g., IoT, embedded hardware). Unlike cloud data
centers, the infrastructure at the endpoint can be owned and
operated by application users and developers besides cloud
providers. [5]. The key decisions here for developers/providers
are: (1) what are the most popular workloads, computing
models, and deployment modes leveraging the endpoints; (2)
is there sufficient raw network, storage, and processing capa-
bilities available; (3) what is the appropriate cost and scaling
model (horizontal or vertical scaling); and (4) how to integrate
and manage infrastructure in a unified continuum [50].

C. Edge Components

The reference architecture in Figure 2 shows that edge
and cloud share the same high-level design. This similarity



is because both can run multi-tenant workloads on shared
infrastructure and so need to offer similar services. However,
uniquely at the edge, there should be support for application
offloading both vertically (cloud to edge and back) and hori-
zontally (from one edge system to another) [20]. The presence
and absence of such capabilities determine what computing
model one can use at the edge, e.g., edge clusters can not
communicate among themselves with edge computing, while
they can with fog computing. These unique capabilities are
implemented in the edge components. To encompass these
possibilities, we define these components for edge systems:
E1. Applications are at the first step from the endpoints,
and hence they are in the best position to make decisions
regarding placements, offloading, and scheduling of applica-
tion components to meet workload-specific objectives. For
example, applications can either do processing at the edge
or preprocess data and offload more complex workloads to
the cloud [19]. The key decisions here for developers are: (1)
in which direction does data and compute offloading happen
(cloud to edge, or vice versa); (2) what are the location,
data movement, and mobility-related requirements; and (3) are
back-end and operating services provided services enough to
meet the workload demands.
E2. Back-end: Represents more general-purpose application
execution frameworks such as TensorFlow Lite and We-
bAssembly runtime [51]. These back-end frameworks typi-
cally can manage application-specific memory, storage, com-
munication, and workflows. The key decisions here for de-
velopers are: (1) does the back-end supports the desired
offloading model; and (2) what kind of computing, storage,
and networking resources does a back-end need.
E3. Resource Manager: Manages an edge system’s
application-independent physical and virtual resources (such
as virtual machines and containers). These resource managers
can be local or distributed, and their architecture determines
what computing model one can run on the infrastructure.
For example, KubeEdge is a hierarchical edge resource man-
ager for Kubernetes, which does two levels of independent
allocation for cloud- and edge-related resources. The key
decisions here for developers/providers are: (1) what execution
environment does an application want; (2) what are the scal-
ability requirements; (3) what are the environment allocation
overheads; and (4) what are data privacy and security level
restriction in the scheduling of resources.
E4. Operating Services: Provides support to build distributed
applications, and their responsibilities include (but are not
limited to) communication [52], metadata management [53],
consensus services [54], monitoring [55], storage services [56],
etc. The key decisions here for developers/providers are: (1)
is there an operating service for different kinds of commu-
nication and coordination patterns; (2) are services protected
and isolated from tenants; (3) how do services handle resource
allocation for themselves; and (4) what are scalability, perfor-
mance, and fault-tolerance requirements for such services.
E5. Infrastructure: Similar to endpoints, compute, memory,
and storage resources are provided to the resource manager.

However, unlike endpoints, resources are split into physical
and virtual resources. Bare-metal deployments give users di-
rect access to hardware, while virtualization technologies like
virtual machines and containers abstract physical resources
away to provide more flexibility and security for a slight per-
formance penalty. The key decisions for developers/providers
are: (1) how to split (or multiplex) software and hardware
resources securely between tenants; and (2) is there enough
cooling, energy, and infrastructure to meet the demands.

D. Cloud Components

We identify two critical roles for cloud in the compute
continuum: The first is that of a central controller that man-
ages multiple compute continuum resources and schedules
workload on them [55], [57]. The controller has a global
overview of the endpoint, edge, and cloud resources. Devel-
opers upload continuum workloads to the cloud, which the
cloud controller can schedule on specific edge systems. The
global overview allows the central controller to schedule work
more efficiently than a decentralized approach where each
edge system manages itself. However, maintaining a global
overview and scheduling workload from the cloud adds extra
overhead to the offloading process [18]. The second role is that
of an offloading target that uses cloud computing to provide
much more computing and storage capacity than edge [58].
Resources in the edge are limited [59], so cloud computing
can be used to run resource-intensive applications like deep
learning instead. However, applications that require low end-
to-end latency can not leverage the cloud due to the increased
communication latency compared to the edge [12]. The role
of offloading target in the continuum is key to both edge and
cloud; therefore, they share the same high-level design in our
architecture. The components from edge, described in §III-C,
can also be applied to cloud. Liu et al. already provide a
reference architecture for cloud computing [60].

E. Domain-specific Architectures

We create architectures for deep learning (Figure 3) and
industrial IoT (IIoT, Figure 4) use cases and provide example
systems for each component to demonstrate how the unified
reference architecture can be used to explore design trade-offs
for application deployments in the compute continuum.

Deep Learning: An important trend for deep learning in
the continuum is that model training and inference tasks
are split across multiple tiers of devices, as deep learning
applications train neural networks with large memory foot-
prints on data generated on endpoints. Deciding where and
how to deploy these tasks presents complex trade-offs and
requires careful analysis [19]. For example, cloud services
like AWS SageMaker (component C2 in Figure 3) offer high-
performance managed machine learning training in the cloud
but require possibly privacy-sensitive data to be moved to
public infrastructure. Federated learning provides a solution as
users offload anonymized information of their privately trained
model to the cloud instead of the data used to train the model.
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While model inference is much less compute and storage
intensive than model training, it still requires the use of
specialized deep learning frameworks like Neurosurgeon [19]
(P3) and models like MobileNet [65] to be deployable on
constrained edge or endpoint devices. These specialized frame-
works and models present a complex trade-off between re-
sponse time and model accuracy: By lowering the compute
and storage requirements for model inference, model accuracy
drops, but the application can be deployed on constrained
devices close to the user, lowering the response time to
the user. For recommender systems, real-time user feedback
may be required, so response time is preferred above model
accuracy, while for video analytics the opposite may apply.

Industrial IoT: In IIoT, endpoint devices generate large
amounts of data that often need to be processed in real-time,
with strict requirements for privacy and durability [66]. These
endpoints are connected to Programmable Logic Controllers
(PLCs, component P2 in Figure 4); these are control systems
for local control without support for advanced processing due
to resource limitations. Thus, offloading to remote devices over
a fieldbus or via wireless communication is required (P3).

As many industry deployments include a vast amount of
sensors and actuators, processing and storing large amounts of
generated data requires extensive resources. Therefore, public
cloud offerings like AWS IoT and Bosch IoT suite (C2) can
be a good fit for many deployments [66]. However, reliable
real-time processing guarantees may be broken if the network
infrastructure between the endpoints and cloud can not support
the large data streams. Moreover, offloading sensitive data to
third parties may introduce security and privacy concerns. On-
premise cloud devices are therefore often used in IIoT de-
ployments, delivering more stable performance by eliminating
possible connectivity issues to remote clouds and guaranteeing
data privacy. In addition to clouds, edge gateways (E5) can be
used to offer prompt response time and increased security.

In conclusion, with the example architectures for deep
learning and IIoT we show that our uniform architecture helps
developers and infrastructure providers navigate the compute
continuum without being restricted to hardware and software
solutions from a single computing model, but can freely
combine solutions instead.
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Fig. 4. Industrial IoT (IIoT) architecture. Examples include Cloud Fire-
store [67], ACRN [68], and PikeOS [69].

IV. DEPLOYMENT AND BENCHMARKING FRAMEWORK

In the design of our reference architecture, we showed
that by changing the implementation of components in our
architecture, we can create deployments for any task offloading
computing model. To demonstrate this mechanic in practice,
we present Continuum, an infrastructure deployment and
benchmarking framework for the compute continuum in this
section and an accompanying analytical model in §V. The
combination between infrastructure deployment and bench-
marking, both highly configurable through a list of parameters,
allows us to perform a systematic quantitative exploration
of the compute continuum deployment space by performing
performance analysis on architecture components. We attempt
to answer three fundamental questions here:

1) First, does our framework allow exploring different com-
plex deployments in the compute continuum? We explore
different computing models in the framework using a
few lines of changes in the configuration setup with pa-
rameters derived directly from the reference architecture
(Table II and example Listing 1)).

2) Secondly, how can our framework help explore design
trade-offs? Using the framework, we provide a break-
down of end-to-end latency (compute, communication)
with an aggregation factor for various cloud, edge, and
endpoint offload targets (Figures 6 and 7).

3) Lastly, does the analytical model provide exploratory
guidelines in line with the empirical evaluation? We
explain our first-order analytical model, corroborate its
predictions with empirical evaluations, and show its of-
floading guidelines as a heatmap (Figure 8).

The framework and model are open-sourced and available
at https://github.com/atlarge-research/continuum.

A. Framework Design and Interaction

Performing experiments in the continuum is challenging
due to the wide range of networks and hardware available
(Figure 1). Currently, no physical infrastructure is available
that allows the exploration of all task offloading computing
models and related deployments, only a selection [70]. As
an alternative, devices and networks can be virtualized to

https://github.com/atlarge-research/continuum


TABLE II
SELECTION OF PARAMETERS OFFERED BY THE FRAMEWORK.

Parameter Architecture Component Description
Data generation frequency P1 Rate at which data is generated at endpoints.
Application P1, P2, E1, E2, C1, C2 Application to deploy and benchmark.
Resource manager P3, E3, E4, C3, C4 Resource manager to deploy in the continuum.
Hypervisor P4, E5, C5 Virtual machine provider, e.g., QEMU.
Devices per tier P4, E5, C5 Number of cloud, edge, and endpoint devices to emulate.
Cores per device P4, E5, C5 Number of CPU cores to assign to each VM.
Quota per CPU P4, E5, C5 Use part of a CPU core to emulate slower hardware.
Network per tier P4, E5, C5 Throughput and latency between emulated devices.
Machine addresses P4, E5, C5 Machine IP addresses when doing emulation across multiple physical machines.
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Fig. 5. Design of our continuum benchmarking framework.

emulate the compute continuum on commodity hardware. This
emulation offers a flexible and easy-to-use method to explore
the continuum’s deployment space, as emulated hardware is
configurable, unlike physical hardware. Furthermore, such an
emulated environment can be used to benchmark various
deployment scenarios using components from our reference ar-
chitecture. We have created such an emulated deployment and
benchmarking framework and present its design in Figure 5.
Our framework allows the emulation of many virtual machines
across many physical machines, ranging from commodity
hardware to specialized edge or endpoint hardware. This
flexibility allows our framework to function as an emulated
benchmarking environment on general-purpose hardware and
as a benchmark on physical compute continuum resources.
The framework offers a set of simple and intuitive parameters
that can be explored and mapped to the reference architecture
to understand their implications on workload performance, as
shown in Table II and abridged in Listing 1.

On the infrastructural level (components P4, E5, and C5 in
Figure 2), users can specify the number of required cloud,
edge, and endpoint devices (line 6) that should be emu-
lated, the specifications of the emulated devices (cores, CPU
share/quota, memory, storage, lines: 7-16), and the networks
connecting the devices (component 1 in Figure 5). We cur-
rently leverage the Linux QEMU/KVM hypervisor [71] (v6.0)
with virtual machines (VMs) and tools (tc and blkiotune)
to emulate a large continuum setup ( 2 ) on a 3-machine Xeon
Silver 4210R CPU cluster connected with a 1 Gbps link. For

1 [infrastructure]
2 hypervisor = qemu
3 thread_pinning = True
4

5 # VM settings for cloud, edge, endpoint
6 devices_per_tier = 10,0,40
7 cores_per_device = 4,0,1
8 quota_per_cpu = 1.0,0,0.5
9

10 # Latency (ms): average,variability
11 cloud_to_cloud = 1,0
12 cloud_to_endpoint = 45,5
13

14 # Throughput (Mbit): average
15 cloud_to_cloud = 1000
16 cloud_to_endpoint = 8
17

18 machine_address = 192.168.1.1,192.168.1.2
19

20 [benchmark]
21 use_benchmark = True
22 data_generation_frequency = 5
23 application = image_classification
24 resource_manager = kubernetes

Listing 1. Example configuration file for Figures 6 and 7.

the next step, operating services and resource managers are
installed in the provisioned VMs (P3, E3, E4, C3, C4) through
Ansible [72] ( 3 and 4 ). We currently support Kubernetes
(v1.21) as cloud resource manager, KubeEdge (v1.8) as edge
resource manager, and OpenFaaS for serverless resources.
On the application level (P1, E1, C1), we support data-
processing applications with data generation at the endpoints
and processing options at an endpoint, edge, and cloud ( 5
and 6 ).

B. Offload Model Design Space Exploration

This section illustrates how a developer explores the contin-
uum design space using the aforementioned simple configu-
rations with an image-processing workload as an example. In
this workload, images are generated at endpoints (e.g., camera,
thermal sensors), and can be processed at endpoints, edge, or
cloud nodes with different CPU processing capabilities. We
fix the image generation rate to five images per second, and
set the bandwidth between the endpoint and its offloading
targets to 8 Mbit/s, a representative throughput value for 4G
networks [73].

Table III shows how varying different parameters in list-
ing 1 allows us to explore four computing offload models on



TABLE III
PARAMETERS FOR THE DEPLOYMENTS USED IN OUR EVALUATION.

Parameter Cloud Edge-Large Edge-Small Mist
Resource manager Kubernetes KubeEdge KubeEdge -
Worker location Cloud Edge Edge Endpoint
Workers 10 10 10 10
Worker cores 4 4 2 2
Worker quota 1.0 1.0 0.75 0.5
Endpoints per worker 4 4 2 1
Network latency (ms) 45 30 7.5 7.5
(#cloud, #edge, #endpoint) (11, 0, 40) (1, 10, 40) (1, 10, 20) (0, 0, 20)

Fig. 6. Breakdown of the end-to-end latency per deployment.

our 3-machines cluster. For example, with cloud offloading,
images are transmitted from the endpoint to a cloud cluster
with 10 workers, each with 4 cores and full CPU quota
(1.0), and each worker serves 4 endpoints (controlled via pa-
rameters devices_per_tier, cores_per_device,
quota_per_cpu). There are 11 cloud nodes in total (10
workers and one controller), zero edge nodes, and 40 end-
points. In contrast, with edge offloading, workers can be placed
at the edge using the parameters devices_per_tier and
quota_per_cpu for large and small CPU configurations.
Lastly, to capture mist computing, all image processing tasks
are offloaded to other endpoint devices, thus marking the cloud
and edge devices as zero (setting devices_per_tier as
0, 0, 40). The Continuum framework also allows us to
specify the network and storage properties.

For these four computing models, figure 6 shows our
results. The x-axis shows the offloading model. The y-axis
shows the end-to-end image processing time (in milliseconds,
lower is better) split between computation and communication
components. We report the average and standard deviation
values over three runs. There are three main observations here.
First, our framework allows explorations of these different
offloading models with less than 5 lines of configuration
changes between them (total size 50 lines, not shown). Second,
we see a latency reduction between Cloud and Edge-large
devices with equal CPU capabilities (the first two bars from the
left) due to a decrease in communication time, as edge nodes
are closer to the endpoint than cloud nodes. Lastly, as we move
closer to the data source (Edge-small and Mist), we receive
a gradual decrease in computing capabilities (0.75 and 0.5
CPU fractions) while still reducing communication latencies.
However, gains from the latency reduction can not offset the
overheads in computing due to slower processors; hence, the

A
B

Cloud Edge Endpoint
Endpoints connected per worker 

Fig. 7. System load when processing data, with more endpoints connected
to one processing device. Experiments A and B are used for the performance
model examples in Equations 3 and 4, respectively.

end-to-end processing latencies increase. Depending on the
workload requirements, a developer can decide which model
is of interest to them. For example, if the cutoff latency is
300ms, then a user must only consider Cloud or Edge-large,
not Edge-small and Mist offloads.

In the second experiment, we explore the cardinality and
location of data aggregation (P1, E1, and C1 boxes) by varying
how many endpoints an offload target can serve. We identify
this limit by defining a “system load” property, which is
calculated by comparing the number of images processed
(compute capacity) to images offloaded (compute demand) per
second. A load of more than 100% implies more offloading
requests are coming in than the worker device can process,
resulting in queuing delays. Such setups are common where a
developer needs to identify the best place for data aggregation
to balance out computation and communication capabilities
in the continuum. Close-to-source aggregation at endpoints
reduces network transmission size but at the expense of using
slower processors. We benchmark a single offload task with an
aggregation cardinality of 1, 2, 4, and 8 connected endpoints.
Figure 7 shows our results. The x-axis shows the aggregation
granularity (cardinality and location), the left y-axis (the bar)
shows the system load, and the right y-axis (log-scale, not
starting from 1) shows the end-to-end latencies in millisec-
onds. Looking at the systems loads, we can observe that
cloud-based aggregation can support up to 4 endpoints/task,
while edge only supports 2 endpoints/task, after which the
system load increases beyond 100% because a queueing delay
of image processing requests is introduced in the end-to-end
latencies. The graph also shows an endpoint-only bar that
represents a locally-processed solution that is non-viable as
the system load is more than 100%, thus failing to deliver
real-time processing because of queueing delays.

The key takeaway messages with these experiments are
that the open-source Continuum framework allows (i) a com-
prehensive exploration of various compute offloading models
with an expressive list of parameters; and (ii) a deep explo-
ration of specific setups such as aggregation point offloading
and cardinality.



V. ANALYTICAL PERFORMANCE MODEL

For our final contribution, we enhance the performance
analysis capabilities of our compute continuum benchmark by
introducing a simple-to-use, first-order analytical performance
model similar to a Roofline model in Figure 8. The model
predicts if applications can be offloaded to cloud or edge,
should be processed locally on endpoints, or are not suited
for deployment in the compute continuum. The performance
model is part of the open-source benchmark suite.

A. Offload Model and Heatmap

To predict if applications can be executed in the continuum,
we need to verify if the available network and compute
resources satisfy an application’s data and processing require-
ments. Equations 1 and 2 describe our performance models
for local execution on endpoints and offloaded processing on
edge or cloud. Only when the deployment meets all data
and processing requirements will the models deem viable
execution in the continuum, marked as 1 in the equations.

We assume long-running data processing applications are
used with predictable and periodical offloading patterns, such
as the machine learning application used in the benchmark
evaluation, so we ignore startup and clean-up overheads
when offloading tasks. This scenario is common in edge data
processing as sensors and other data-generating devices like
cameras are in constant use.

Local =

{
0 if (Tproc ×R) > (Ce ×Qe)

1 otherwise
(1)

Offload =


0 if (Tproc ×R× E) > (Co ×Qo)

0 if (Tpre ×R) > (Ce ×Qe)

0 if D > B

1 otherwise

(2)

where:
Tproc Processing time per data element (sec)
Tpre Preprocessing time per data element (sec)
C CPU cores of endpoint e or offloading target o
Q CPU quota of endpoint e or offloading target o
R Data element generation rate (Hz)
E Endpoints connected to offloading target
D Data generated per second per endpoint (Mbps)
B Bandwidth to offloading target (Mbps)
The formula captures compute capacity, represented as

various calculations involving the CPU capacity C and quota
Q at the offload targets, and compute demand, captured as the
time to process each data element (Tproc and Tpre) with data
element generation rate P . In the simplest terms, whenever
demand (workload property) exceeds capacity (infrastructure
property), that configuration setup is not viable (marked as
0, and the red zone in Figure 8). More specifically, with
endpoints generating R images per second, each image should
be processed, either locally or on an offload target, before the
next image is generated. This guarantees real-time processing
as there are no workload queues building up.

No Processing

Cloud Preferred 

Edge Preferred

Endpoint Preferred

A

B

Fig. 8. Exploring preferred deployment models for the model examples from
Equations 3 (A) and 4 (B). The division between cloud, edge, and endpoint
preferred is configurable and based on computing capacity differences.

Equation 2 also identifies a non-viable case where data
generation rates from endpoints are higher than the available
bandwidth. For viable configurations, there is at least one
viable processing location: Either locally on the endpoint
(Eq. 1), or remotely on a cloud or edge by offloading (Eq. 2).

B. Verifying Empirical Results
We focus on two results marked as A (endpoint-only) and

B (offloaded) in Figure 7. We use the parameters from these
experiments as reported in Table III, including an R of 5. The
equation for point A is:

Local : 0.11× 5 = 1× 0.5

0.56 > 0.5
(3)

Therefore, showing that local processing on an endpoint is
not viable in this configuration because the endpoint can not
keep up with the data generation speed. The estimated system
load is (0.56/0.5) ∗ 100 = 112%, a slight difference from the
actual system load of 131% noted as A in Figure 7, but still
reaching the same conclusion. For the offloaded scenario with
an aggregation of two endpoints:

Offload : 0.14× 5× 2 = 2× 0.75 and 0.001× 5 = 1× 0.5

1.4 < 1.5 and 0.005 < 0.5
(4)

The left part of the equation shows that processing can be
successfully offloaded to the edge, with an estimated system
load of (1.4/1.5) ∗ 100 = 93%. This system load is again not
much different from the actual system load of 83%, denoted
as B in Figure 7. All three conditions for offloading are
passed, showing the viability of this configuration: Offloading
processing to the edge, preprocessing on the endpoint (the
right part of Equation 4), and available bandwidth (2.7 Mbps
required compared to 8 Mbps offered). Hence, our analytical
model correctly predicts points A and B, with their position
in Figure 8 indicating deployment viability or non-viability.



TABLE IV
SELECTION OF REFERENCE ARCHITECTURES MAPPED TO COMPUTING
MODELS FOR TASK OFFLOADING. MC: MIST COMPUTING; EC: EDGE

COMPUTING; MEC: MULTI-ACCESS EDGE COMPUTING; FC: FOG
COMPUTING; MCC: MOBILE CLOUD COMPUTING. SYMBOLS:  :

PRESENT; #: NOT PRESENT.

Authors MC MEC EC FC MCC
Yogi et al. [74]  # # # #
ETSI [37] #  # # #
ECC [59] # #  # #
IIC [8] # #  # #
Intel, SAP [75] # #  # #
OpenNebula [76] # #  # #
Sittón-Candanedo et al. [77] # #  # #
Qinglin et al. [78] # #   #
Willner et al. [79] # #   #
Mahmud et al. [80] # # #  #
OpenFog Consortium [81] # # #  #
Pop et al. [82] # # #  #
Dinh et al. [25] # # # #  
Compute continuum (this work)      

VI. RELATED WORK

We have discussed past efforts in building isolated com-
puting models in §III. To the best of our knowledge, only
previous work from Qinglin et al. [78] and Willner et al. [79]
has discussed the possibility of combining different computing
models, however, this is limited to only edge and fog com-
puting. Table IV summarizes previous efforts (and us, the last
row) that cover different models in their analysis.

We design and implement a deployment and benchmarking
framework for the compute continuum to explore the contin-
uum’s deployment space. On infrastructure provisioning and
emulation, closest to our work, Symeonides et al. [83] present
Fogify, a framework for emulating fog resources, and Hasen-
burg et al. present a similar framework with MockFog [84].
These systems are part of a larger class of cloud, edge, and
endpoint resource emulation and simulation frameworks [85].
All support limited computing models and therefore are re-
stricted in resources and deployments that can be emulated, un-
like our framework, which enables emulation of all resources
spawning the entire continuum. Additionally, by emulating vir-
tual machines instead of isolation methods such as containers,
our framework allows the configuration and benchmarking of
architecture components other than applications. For example,
users can switch between the Kubernetes and KubeEdge
resource managers or add a new resource manager; the same
applies to operating services. Table V shows the limitations of
related work compared to our framework.

On benchmarking continuum resources and systems, closest
to our work, Kimovski et al. [86] propose a benchmark-
ing framework spawning edge, cloud, and fog; we add to
it DeFog [87] and DeathStarBench [88]. These benchmark
tools present a larger class of benchmarking tools for cloud,
edge, and endpoint resources [89]. We improve upon these
systems by offering more control over resource allocation
(e.g., physical machines, virtual machines, containers) and
deployment models (e.g., mist computing, edge computing,
etc.) to benchmark and by allowing greater customization of

TABLE V
COMPARISON OF CHARACTERISTICS OF SELECTED EMULATION AND

BENCHMARKING FRAMEWORKS FOR CLOUD AND EDGE.

Infrastructure Benchmark This
Characteristic [83] [84] [86] [87] [88] work
Considers cloud resources       
Considers edge resources       
Considers endpoint resources       
Considers network resources       
Configurable compute resources   # # #  
Configurable networks   # # #  
Configurable resource managers # # # # #  
Configurable operating services # # # # #  
Application benchmarking       
Supports all computing models # # # # #  

compute and network resources. We argue that the coupling of
infrastructure emulation and benchmarking that our framework
offers is key in efficiently exploring the design space of
continuum deployments and is not present in any related
benchmark frameworks (the first two columns in Table V).

On modeling the performance of compute continuum sys-
tems, closest to our work, Majeed et al. [90] do performance
modeling for workload offloading in the fog; we add to it work
on network modeling from Ali-Eldin et al. [91]. These works
provide detailed performance models for specific continuum
deployments, unlike our first-order model, which can be ap-
plied to many models. Furthermore, our performance model is
accompanied by an compute continuum benchmark that helps
to quickly iterate on application deployment configurations.

VII. CONCLUSION AND ONGOING WORK

In this paper, we have made a case for unifying various
past, present, and emerging computing models into a single
unified compute continuum. To accomplish this, we provide a
detailed analysis of 17 computing models, identify their unique
characteristics, and unify them under a reference architecture.
The reference architecture provides a conceptual framework
for a systematic exploration of the deployment design space
at the continuum. We then provide two unique instantiations
of the reference architecture with machine learning and indus-
trial IoT continuum workloads. To enhance the exploration
guidelines, our reference architecture is accompanied by a
deployment framework and first-order analytical model that
help continuum developers to reason about their workloads
with strong theoretical and engineering foundations. We are
working to enhance the framework with cloud infrastructure
support, energy modeling, and automatic ML-driven explo-
ration capabilities. The effort to develop the reference ar-
chitecture is a part of SPEC-RG, and the framework and
model are open-source, and under active development: https:
//github.com/atlarge-research/continuum.
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– project “PSI” (No. 2020-05094), and the Knowledge Foun-
dation (KKS) – project “SACSys” (No. 20190021).

https://github.com/atlarge-research/continuum
https://github.com/atlarge-research/continuum


REFERENCES

[1] I. Stoica and S. Shenker, “From cloud computing to sky computing,”
in Proceedings of the Workshop on Hot Topics in Operating
Systems, ser. HotOS ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 26–32. [Online]. Available:
https://doi.org/10.1145/3458336.3465301

[2] S. Eismann, J. Scheuner, E. V. Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, and A. Iosup, “The state of serverless
applications: Collection, characterization, and community consensus,”
IEEE Trans. Software Eng., vol. 48, no. 10, pp. 4152–4166, 2022.
[Online]. Available: https://doi.org/10.1109/TSE.2021.3113940

[3] J. Schleier-Smith, V. Sreekanti, A. Khandelwal, J. Carreira, N. J.
Yadwadkar, R. A. Popa, J. E. Gonzalez, I. Stoica, and D. A. Patterson,
“What serverless computing is and should become: The next phase of
cloud computing,” Commun. ACM, vol. 64, no. 5, p. 76–84, apr 2021.
[Online]. Available: https://doi.org/10.1145/3406011

[4] M. Satyanarayanan, G. Klas, M. D. Silva, and S. Mangiante, “The
seminal role of edge-native applications,” in 3rd IEEE International
Conference on Edge Computing, EDGE 2019, Milan, Italy, July 8-13,
2019, E. Bertino, C. K. Chang, P. Chen, E. Damiani, M. Goul,
and K. Oyama, Eds. IEEE, 2019, pp. 33–40. [Online]. Available:
https://doi.org/10.1109/EDGE.2019.00022

[5] AWS, “AWS Greengrass,” https://aws.amazon.com/greengrass/, 2021,
accessed: 2021-05-12.

[6] S. Lin, Y. Zhang, C. Hsu, M. Skach, M. E. Haque, L. Tang,
and J. Mars, “The architectural implications of autonomous driving:
Constraints and acceleration,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2018, Williamsburg, VA,
USA, March 24-28, 2018, X. Shen, J. Tuck, R. Bianchini, and
V. Sarkar, Eds. ACM, 2018, pp. 751–766. [Online]. Available:
https://doi.org/10.1145/3173162.3173191

[7] D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra, S. N. Sinha,
A. Kapoor, M. Sudarshan, and S. Stratman, “Farmbeats: An iot platform
for data-driven agriculture,” in 14th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2017, Boston, MA, USA,
March 27-29, 2017, A. Akella and J. Howell, Eds. USENIX
Association, 2017, pp. 515–529. [Online]. Available: https://www.
usenix.org/conference/nsdi17/technical-sessions/presentation/vasisht

[8] M. Tseng, T. Edmunds, and L. Canaran, “Introduction to edge
computing in IIoT,” Industrial Internet Consortium, Tech. Rep., 2018.
[Online]. Available: https://www.iiconsortium.org/pdf/Introduction to
Edge Computing in IIoT 2018-06-18.pdf

[9] X. Zhang, H. Chen, Y. Zhao, Z. Ma, Y. Xu, H. Huang, H. Yin, and
D. O. Wu, “Improving cloud gaming experience through mobile edge
computing,” IEEE Wirel. Commun., vol. 26, no. 4, pp. 178–183, 2019.
[Online]. Available: https://doi.org/10.1109/MWC.2019.1800440

[10] P. Patel, M. I. Ali, and A. P. Sheth, “On using the intelligent edge
for iot analytics,” IEEE Intell. Syst., vol. 32, no. 5, pp. 64–69, 2017.
[Online]. Available: https://doi.org/10.1109/MIS.2017.3711653

[11] M. Z. Khan, S. Harous, S. U. Hassan, M. U. G. Khan,
R. Iqbal, and S. Mumtaz, “Deep unified model for face recognition
based on convolution neural network and edge computing,” IEEE
Access, vol. 7, pp. 72 622–72 633, 2019. [Online]. Available: https:
//doi.org/10.1109/ACCESS.2019.2918275

[12] Linux Foundation, “State of the edge 2021,” https://project.
linuxfoundation.org/hubfs/LF%20Edge/StateoftheEdgeReport 2021.
pdf, 2021, accessed: 2021-06-06.

[13] A. Trivedi, L. Wang, H. Bal, and A. Iosup, “Sharing and caring of data at
the edge,” in 3rd USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 20). USENIX Association, Jun. 2020. [Online]. Available:
https://www.usenix.org/conference/hotedge20/presentation/trivedi

[14] N. Sreekumar, A. Chandra, and J. B. Weissman, “Position paper:
Towards a robust edge-native storage system,” in 5th IEEE/ACM
Symposium on Edge Computing, SEC 2020, San Jose, CA, USA,
November 12-14, 2020. IEEE, 2020, pp. 285–292. [Online]. Available:
https://doi.org/10.1109/SEC50012.2020.00040

[15] R.-A. Cherrueau, A. Lebre, D. Pertin, F. Wuhib, and J. M.
Soares, “Edge computing resource management system: a critical
building block! initiating the debate via OpenStack,” in USENIX
Workshop on Hot Topics in Edge Computing (HotEdge 18).
Boston, MA: USENIX Association, Jul. 2018. [Online]. Available:
https://www.usenix.org/conference/hotedge18/presentation/cherrueau

[16] B. Varghese, E. de Lara, A. Y. Ding, C. Hong, F. Bonomi,
S. Dustdar, P. Harvey, P. Hewkin, W. Shi, M. Thiele, and P. Willis,
“Revisiting the arguments for edge computing research,” IEEE Internet
Comput., vol. 25, no. 5, pp. 36–42, 2021. [Online]. Available:
https://doi.org/10.1109/MIC.2021.3093924

[17] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, “The
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