
Continuum
Automate Infrastructure Deployment and
Benchmarking in the Compute Continuum
Matthijs Jansen, Linus Wagner,
Animesh Trivedi, Alexandru Iosup

m.s.jansen@vu.nl
atlarge.science/offsense

http://atlarge.science

Use Case: Video Processing

2

Requirement: Process live video using ML

Problem: Device may not have resources
Solution: Offload data

Task Offloading

3

Offloading targets?

Available resources?

Requirements?

What Deployment Works?

4

Simple solution →

Let’s deploy

And find out

Let’s Deploy: Infrastructure

5

Requirement: Infrastructure
→ Very costly

May be infeasible to get!

Let’s Deploy: Software

6

Requirement: Software
→ Very costly

May be infeasible to do!

Let’s Deploy: Software

7

Requirement: Software
→ Very costly

May be infeasible to do!We can not test every deployment by hand

Design Space Exploration

8

Can’t test all:
→ Analyze
→ Prune

Big performance differences between deployments

Design Space Dimensions

9

● What to offload?
● Services to use?
● Parties involved?
● Resources?
● Networks?
● Requirements?
● …

Design Space Dimensions

10

● What to offload?
● Services to use?
● Parties involved?
● Resources?
● Networks?
● Requirements?
● …

Analysis is very costly and difficult

11

1. Many deployments in the continuum
→ Big performance differences

2. Unlikely to find a satisfactory deploym. in one go
→ Even with expert knowledge

3. Need to iterate over many deployments quickly
→ To expensive with real-world deployments

Problem Summary

Continuum
Automate cloud-edge infrastructure deployment
and benchmarking in the compute continuum

https://github.com/atlarge-research/continuum

12

SPEC-RG Reference Architecture for Cont.

13Implementation in specific components

Common components in continuum

The SPEC-RG Reference
Architecture for the
Compute Continuum,
Matthijs Jansen et al,
CCGRID’23

SPEC-RG Reference Architecture

14

Application
Benchmark

Software

Infrastruct.

The Continuum Framework

15

Design principles
1. Accurate

→ Hardware deployment
2. Automated

→ Scripting
3. Extendable

→ Modular design
4. Flexible

→ Emulation

Step 1: Infrastructure Provisioning

16

Infrastructure providers:

● Baremetal
● QEMU (VMs)
● Google Cloud (VMs)
● Docker (containers)

Step 1: Infrastructure Provisioning

17

Provider = GCP
Cloud-VMs = 5
Cloud-cores = 8
Cloud-memory = 16 GB
Storage-read = 1 GBps
Cloud-Edge-Latency = 15 ms

config-example.cfg

Step 2: Software Installation

18

● Install software on infra
● Automate it once, repeat
● Minimal restrictions

Step 2: Software Installation

19

Resource-manager = Kubernetesconfig-example.cfg

● Create module
● Ansible automation

Step 2: Software Installation

20

master-start.yml

Step 3: Benchmark, Observe

21

Define:

● Application
● Deployment method
● Application arguments

Built-in observability + custom

Step 3: Benchmark, Observe

22

Resource-manager = Kubernetes
App = my_app
#cloud-apps = 10
#endpoint-apps = 100
my-app-argument-1 = …

config-example.cfg

Step 3: Benchmark, Observe

23

deploy_kube.yml

Evaluation

24

Use Case: Video Processing

Endpoint: Security camera, X images/second

Processing: ML

Question: Where to process?

Metrics: End-to-end latency, utilization
25

Deployment Scenarios

26

Endpoint VM 1

Application

Cloud VM 2 Endpoint VM 1

Processing
Application

Kubernetes
Worker 1 Data

generator
Application

Edge VM 1

Processing
Application

KubeEdge
Worker 1

Cloud VM 1

Kubernetes
Controlplane

Local processing Cloud / Edge offloading

Endpoint offloading
Endpoint VM 1

Application

Endpoint VM 2

Application

Setting

Infra Provider: Google Cloud, QEMU

Resources: Endpoints < Edge < Cloud

Latency to endpoint: Endpoint < Edge < Cloud

27

End-to-end Latency Breakdown

28

1. EP pre-processing
2. EP → Target
3. Queue
4. Processing
5. Target →EP

Network Latency and CPUs

29

Discover:
1. Performance

trade-off
2. Metrics to

focus on

Results difficult to predict, benchmarking required!

Multiple Endpoints per Offload Target

30

System Load < 100%: Real-time processing
> 100%: Queue starts to form

E2E Latency

Future Work

31

Simulator → Fast
Emulator → Real-world metrics

More Ongoing and Future Work

32

1. Kubernetes scalability analysis
2. Energy modeling for resource management
3. Performance analysis of virtualization

technologies
4. Scheduling for serverless edge computing
5. Domain-specific language for Continuum

Take-away message

33

Compute continuum is complex, difficult to navigate

We offer Continuum:
● Deploy Infrastructure, Software, Benchmark
● Accurate, Automated, Extendable, Flexible

https://github.com/atlarge-research/continuum
https://atlarge-research.com/offsense/

This presentation was based of work from

34

1. Matthijs Jansen, Linus Wagner, Animesh Trivedi, and Alexandru Iosup. Continuum:
Automate Infrastructure Deployment and Benchmarking in the Compute Continuum (2023).
Companion of the 2023 ACM/SPEC International Conference on Performance Engineering
(ICPE’23). https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf

2. Matthijs Jansen, Auday Al-Dulaimy, Alessandro V. Papadopoulos, Animesh Trivedi, and
Alexandru Iosup (2023). The SPEC-RG Reference Architecture for the Compute Continuum.
2023 23th IEEE/ACM International Symposium on Cluster, Cloud, and Internet Computing.
https://atlarge-research.com/pdfs/2023-ccgrid-refarch.pdf

Further reading
1. Alexandru Iosup, Alexandru Uta, Laurens Versluis, Georgios Andreadis, Erwin van Eyk, Tim Hegeman,

Sacheendra Talluri, Vincent van Beek, and Lucian Toader (2018). Massivizing Computer Systems: a
Vision to Understand, Design, and Engineer Computer Ecosystems through and beyond Modern
Distributed Systems. CoRR. http://arxiv.org/abs/1802.05465

https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf
https://atlarge-research.com/pdfs/2023-ccgrid-refarch.pdf
http://arxiv.org/abs/1802.05465

