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Use Case: Video Processing 
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Requirement: Process live video using ML

Problem: Device may not have resources
Solution: Offload data



Task Offloading
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Offloading targets?

Available resources?

Requirements?



What Deployment Works?
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Simple solution →

Let’s deploy

And find out



Let’s Deploy: Infrastructure 
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Requirement: Infrastructure
→ Very costly

May be infeasible to get!



Let’s Deploy: Software 
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Requirement: Software
→ Very costly

May be infeasible to do!



Let’s Deploy: Software 
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Requirement: Software
→ Very costly

May be infeasible to do!We can not test every deployment by hand



Design Space Exploration
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Can’t test all:
→ Analyze
→ Prune

Big performance differences between deployments



Design Space Dimensions
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● What to offload?
● Services to use?
● Parties involved?
● Resources?
● Networks?
● Requirements?
● …



Design Space Dimensions
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● What to offload?
● Services to use?
● Parties involved?
● Resources?
● Networks?
● Requirements?
● …

Analysis is very costly and difficult
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1. Many deployments in the continuum
→ Big performance differences

2. Unlikely to find a satisfactory deploym. in one go
→ Even with expert knowledge

3. Need to iterate over many deployments quickly
→ To expensive with real-world deployments

Problem Summary



Continuum
Automate cloud-edge infrastructure deployment 
and benchmarking in the compute continuum

https://github.com/atlarge-research/continuum
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SPEC-RG Reference Architecture for Cont.

13Implementation in specific components

Common components in continuum

The SPEC-RG Reference 
Architecture for the 
Compute Continuum, 
Matthijs Jansen et al, 
CCGRID’23



SPEC-RG Reference Architecture
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Application
Benchmark

Software

Infrastruct.



The Continuum Framework
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Design principles
1. Accurate

→ Hardware deployment
2. Automated

→ Scripting
3. Extendable

→ Modular design
4. Flexible

→ Emulation



Step 1: Infrastructure Provisioning
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Infrastructure providers:

● Baremetal
● QEMU (VMs)
● Google Cloud (VMs)
● Docker (containers)



Step 1: Infrastructure Provisioning
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Provider = GCP
Cloud-VMs        = 5
Cloud-cores      = 8
Cloud-memory = 16 GB
Storage-read  = 1 GBps
Cloud-Edge-Latency = 15 ms

config-example.cfg



Step 2: Software Installation
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● Install software on infra
● Automate it once, repeat
● Minimal restrictions



Step 2: Software Installation
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Resource-manager = Kubernetesconfig-example.cfg

● Create module
● Ansible automation



Step 2: Software Installation
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master-start.yml



Step 3: Benchmark, Observe
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Define:

● Application
● Deployment method
● Application arguments

Built-in observability + custom



Step 3: Benchmark, Observe
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Resource-manager = Kubernetes
App        = my_app
#cloud-apps = 10
#endpoint-apps = 100
my-app-argument-1 = …

config-example.cfg



Step 3: Benchmark, Observe
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deploy_kube.yml



Evaluation
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Use Case: Video Processing

Endpoint: Security camera, X images/second

Processing: ML

Question: Where to process?

Metrics: End-to-end latency, utilization 
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Deployment Scenarios
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Endpoint VM 1

Application

Cloud VM 2 Endpoint VM 1

Processing
Application

Kubernetes
Worker 1 Data 

generator
Application

Edge VM 1

Processing
Application

KubeEdge
Worker 1

Cloud VM 1

Kubernetes
Controlplane

Local processing Cloud / Edge offloading

Endpoint offloading
Endpoint VM 1

Application

Endpoint VM 2

Application



Setting

Infra Provider: Google Cloud, QEMU

Resources: Endpoints < Edge < Cloud

Latency to endpoint: Endpoint < Edge < Cloud
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End-to-end Latency Breakdown
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1. EP pre-processing 
2. EP → Target
3. Queue
4. Processing
5. Target →EP



Network Latency and CPUs
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Discover:
1. Performance 

trade-off
2. Metrics to 

focus on

Results difficult to predict, benchmarking required!



Multiple Endpoints per Offload Target
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System Load < 100%: Real-time processing
> 100%: Queue starts to form

E2E Latency



Future Work
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Simulator → Fast
Emulator  → Real-world metrics



More Ongoing and Future Work
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1. Kubernetes scalability analysis
2. Energy modeling for resource management
3. Performance analysis of virtualization 

technologies
4. Scheduling for serverless edge computing
5. Domain-specific language for Continuum
 



Take-away message
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Compute continuum is complex, difficult to navigate

We offer Continuum:
● Deploy Infrastructure, Software, Benchmark
● Accurate, Automated, Extendable, Flexible

https://github.com/atlarge-research/continuum
https://atlarge-research.com/offsense/
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