
Continuum on ARM
Felix Goosens

Vrije University Amsterdam
Amsterdam, Netherlands
f.goosens@student.vu.nl

Abstract
Continuum attempts to unify edge compute like mod-
els to create an easier and more effective solution for
developers. In order to come close to these goals, we
evaluate Continuum in a more realistic scenario than
was done previously.

To achieve this, we developed a design model for
evaluating Continuum on a cluster of resource con-
strained devices. Our design also provides an easy to
manage and robust storage solution.
We also implement ARM support in Continuum to

increase its compatibility and evaluate Continuum on
a cluster of ARM devices. This has exposed some is-
sues with the current implementation of Continuum
that were not previously known. Additionally, our re-
sults have shown similar trends that were present on
the evaluation of Continuum on emulated hardware.
These results therefore show that many trends can be
identified by evaluating a computing framework on
emulated hardware.

1 Introduction
Cloud computing is a popular computing model where the
processing of data is offloaded to a cloud service. However,
due to the popularity of cloud computing, network conges-
tion has become an increasing problem. To counter this, edge
computing is used where small processing tasks are offloaded
to a server in close proximity to the data source.
However, to accommodate for the need of different use

cases, many edge computing like models exist. This makes
it harder for developers to decide which compute model fit
their needs best and causes confusion about the notion of
edge computing.

Continuum addresses this problem by unifying edge compute-
like models into one general framework [1]. By creating a
unified architecture, Continuum aims to reduce complexity
for developers while providing the required characteristics
for the application. Continuum, however, has not been eval-
uated on small devices which are typically used for edge
computing. Additionally, it has no support for the ARM ar-
chitecture, which is a common ISA for small devices.
We aim to evaluate Continuum in a more realistic sce-

nario by using resource constrained ARM devices. By using
Continuum on real hardware, we found some problems and
behavior that was not present in an emulated setting. This

also allows us to analyze the effectiveness of performance
benchmarking on emulated hardware for Continuum.
To accomplish this, we add the functionality for Contin-

uum to also support ARM and perform similar benchmarks
that were done in the original paper. We also use network
storage, so we can easily change our filesystems and do not
have to rely on potentially unreliable storage on our ARM
devices.

Our contributions can be summarized as followed:

1. We showcase a design that allows anyone to evalu-
ate Continuum on resource constrained ARM devices
with easy to manage and reliable storage.

2. We add ARM support on Continuum for its edge and
endpoint nodes.

3. During development and experimentation, we discov-
ered some issues that were not obvious before. We
also give some further insights on how to potentially
solve these issues to improve Continuum further.

4. We evaluate Continuum on resource constrained hard-
ware that Continuum was designed for. We also com-
pare our results with the results found on the original
paper and discuss similarities and differences.

2 Background
2.1 Edge Computing
Edge computing is a computing model where the node is
designed to reduce the high network costs needed for cloud
computing [2]. The core idea is to lower the amount of data
sent to the cloud by performing simple tasks near the source
of the data instead of in the cloud. More complicated tasks
can still be done by the cloud and the cloud can also act as a
centralized server. To accomplish this, edge computing uses
a three layered structure.
The first layer is the terminal layer, which are devices at

the very end of the network and typically generate data that
needs to be processed, such as sensors or cameras. These
devices have very limited resources and thus typically offload
their data straight to the second layer without processing it.

The second layer is the boundary layer and it is this layer
that enables edge computing to reduce the overall network
load. Devices on this layer are responsible for collecting
and processing the generated data from the terminal layer
and to forward data to the cloud for additional processing.
Typical boundary devices can be access points, routers and
switches. To reduce the network load, these devices must be
geographically close to the devices of the terminal layer.



Felix Goosens

Figure 1. Reference architecture for Continuum. The com-
puting models below show how they span across different
components.

The third layer is the cloud layer, which consists of one
or more cloud providers. While the first two layers contain
inexpensive devices that are in close proximity with each
other to reduce network load, the cloud providers in this layer
have much more computing resources and can be located
far away from terminal and boundary devices.

Using these principles, it is possible to reduce the latency
and high long distance bandwidth requirements at the cost
of a small amount of extra compute power.

2.2 Continuum
Edge computing is not the only model that combines local
processing with cloud computing to reduce the network load.
Other models that use this idea have also been made with
different pros and cons. Some models focus on working with
a high latency or utilize a Peer-to-peer network. However,
choosing which model to use can be a daunting task since
many applications do not fit exactly into the use case of a
specific model.

The Continuum framework attempts to summarize some
of these models into one general solution. The framework
can be configured to use different aspects of each model,
allowing developers to pick and choose different pros and
cons across computing models.

Figure 1 represents an overview of the unified architecture
that Continuum is based on. Similar to edge computing,
Continuum uses three different kinds of compute nodes,
endpoints, edge and cloud nodes. The endpoint is similar to

Continuum

Qemu 
VMs

Network 
storage

Physical 
machines

ARM64 ARM64 ARM64

Cloud 
Node
Cloud 
Node

Endpoint 
Node

Edge 
Node

Endpoint 
Node

Endpoint 
Node

Endpoint 
Node

Endpoint 
Node

Endpoint 
Node

Endpoint 
Node

x86_64

iSCSI
TFTP

Figure 2. Our design for evaluting Continuum on ARM
devices.

the terminal layer in edge computing and consists of devices
at the end of the network which typically generates the data
that needs to be processed. The edge works like the boundary
layer and its responsibility is to collect, process and forward
data generated by the endpoints. The cloud is like the cloud
layer and represents compute nodes with a lot of resources
but may be located far away from the endpoint.
Since Continuum can be configured to fit the needs of

different applications, developers do not have to decide on
different compute models but can simply specify their needs.
This simplifies the developing process and also allows Con-
tinuum to better fit the needs of the application.

3 Design
The design of our setup is depicted on figure 2. Our physical
machines consist of systems with a x86_64 or an ARM64 ISA.
They are all connected on a network and use QEMU with
KVM to run their virtual machines.
Continuum has access to every machine and is responsi-

ble for starting the virtual machines, installing the required
software, and running the benchmarks on them. Continuum
also schedules how many cloud, edge and endpoint nodes a
machine has to run.

3.1 Network Storage
Instead of each machine having their storage locally avail-
able to them, we use storage network protocols to provide
the boot and root partition to other machines. In our case,



Continuum on ARM

the x86_64 machine holds the filesystems of every ARM64
machine.
We distribute our storage using TFTP and iSCSI. We use

TFTP to provide the boot files for our ARM64 machines
because it is supported by the default firmware for the rasp-
berry pi 4 b’s, which we use as our ARM64 machines. iSCSI
is our protocol of choice for distributing the root filesystem
due to it’s excellent docker support.

With this configuration, we can manage all of our storage
from one machine and can easily backup, swap and modify
the filesystems for our ARM64 machines. This also means
that we do not have to use unreliable storage solutions, such
as low quality sd cards for our raspberry pi’s.

3.2 Scheduler
Originally, the Continuum framework uses a simple sched-
uler that automatically allocates the requested nodes to the
available physical machines. This process cannot be config-
ured, meaning that it is not possible to specify on which
physical machine a certain node should be running. Since
we need to run all our edge and endpoint nodes on ARM64
machines and our cloud nodes on a x86_64 machine, this
limitation must be addressed.

To solve this issue, we extended the capabilities of the con-
figuration file by also adding the option to specify the nodes
for each physical machine. Our configuration file from figure
2 is shown in Appendix A. When the custom_scheduling flag
is set to True, each physical machine is allocated a number
of different nodes.

4 Continuum on ARM
Here we will discuss some of the issues that had to be re-
solved while adding support for ARM on the Continuum
framework.

Network interface name. Continuum uses Ubuntu-20.04
LTS for its virtual machines. Canonical provides both x86_64
and ARM64 cloud images for this Ubuntu version. However,
the default network interface name differs between these
two architectures. On x86_64 it is "ens2" and on ARM64 it is
"enp2s1"
Since "ens2" is hardcoded in the Continuum framework,

this causes issues when generating libvirt configuration files
and when configuring the network on the virtual machine.
This issue had to be solved by checking the architecture of
the machine and changing the network interface name that
Continuum uses accordingly.

libvirt ARM64 configuration. The libvirt configuration
files that libvirt uses had to be slightly modified to support
ARM64. Besides the network interface name change, the
aarch64 architecture had to be specified and the cpu host-
passthrough mode had to be explicitly stated to enable kvm.

Also, an EFI loader had to be specified as well. Fortunately,
Qemu comes with EFI firmware that is used by default.

support for both x86_64 and ARM64 docker contain-
ers. Continuum uses a docker registry that holds the docker
images that will be used by other nodes. However, support-
ing both x86_64 and ARM64 versions of a docker image on
a docker registry is not trivial. In order to distinguish an
x86_64 image from an ARM64 image with the same name,
a manifest has to be present in the registry that specifies
the corresponding platform for each container. An unfor-
tunate downside is that the ‘docker manifest‘ command is
experimental and may change without warning [3].

Arch recognition while building netperf. Continuum
uses NetPerf to emulate and evaluate networks with certain
properties, such as the latency and throughput. By default
NetPerf is built with an outdated config.guess script. This
causes the building process of NetPerf to fail on ARM64
because it is not able to recognize the platform. To solve this
issue, we download the newest version of config.guess and
overwrite the old script just before building NetPerf.

5 Experimental setup
For our setup, our x86_64 machine has an intel core i7 870
CPU and 8GB of memory. We are using Debian 11 (bullseye),
Qemu and kvm version 5.2.0.

Our ARM devices consist of three raspberry pi’s model 4b.
We use Ubuntu 20.04.4 LTS (focal), Qemu and kvm version
4.2.1. They use an BCM2835 SoC with 4 cores and 4GB of
memory.

5.1 Issues with continuum
While benchmarking Continuum, we experienced some is-
sues. These problems lower the stability and performance of
Continuum. However, these issues do not present limitations
of the design of Continuum and it should be able to rectify
them without significant drawbacks.

Ubuntu auto upgrades. Ubuntu-20.04 LTS has an auto-
matic update service named unattended-upgrades enabled
by default. However, since this service can prevent the user
from installing packages, this can interfere with the setup
of the VMs, causing Continuum to crash. This problem can
be solved by either disabling the automatic update service
as early as possible or by using another distro that does not
ship with an automatic update service by default.

Ram requirements. Continuum uses 1 GB of ram for
each vm per cpu core, including on edge and endpoints.
However, small ARM devices are usually limited in ram and
this requirement can be steep.

Due to our lack of ram, we were unable to run 4 nodes on
a raspberry pi’s, despite it having 4 physical cpu cores. Even



Felix Goosens

running 3 nodes may trigger the OOM killer to terminate
one of the running vms during an experiment.
However, this steep ram requirement may not always be

necessary. We have found that reducing the ram requirement
for endpoint nodes to 800MB per cpu core causes a consid-
erable increase in reliability when running 3 vms on our
raspberry pi’s. Further efforts in reducing the ram require-
ment of Continuum vm’s would make it more reliable to run
on small ARM devices. Additionally, if the ram requirement
can be significantly reduced, it may also be possible to run 4
vms on our raspberry pi’s.

Faster setup. Currently, Continuum has a setup phase
where it configures the base vms before running the exper-
iments. This setup phase only has to be done once, which
lowers the time it takes to run multiple iterations of an ex-
periment.
However, while the experiment itself can finish after 5

minutes, an iteration can still take a long time to finish. This
is because, while the setup phase does help, there is still a
significant amount of configuration to be done after the setup
phase. This remaining part has to be done every iteration and
takes the vast majority of time. We recommend optimizing
the setup, which can be done by including more into the
setup phase for the base vms or by reusing already running
and configured vms from previous experiments.
Lowering the time it takes to perform experiments will

make it easier to run more iterations and therefore increase
the accuracy of the results. It may also make it easier to test
and compare different configurations of Continuum, such as
the optimal amount of endpoint nodes per edge node.

6 Evaluation
We evaluate the performance of both cloud computing and
edge computing in our setup with a variety of endpoints. We
use the same application for data generation and process-
ing as in the Continuum paper. That is, we generate data
in the form of images by emulating a camera and process
it by performing object detection. We also use MQTT to
communicate between two application components.
Just like the Continuum paper, we generate data for 5

minutes per experiment. We also ensure that each machine
never emulates more cores for each vm than the amount of
physical cores.
Figure 4 shows the results for using cloud and edge com-

puting where each endpoint generates 5 images per second.
The x-axis shows the amount of endpoints that were used in
each experiment, alongwith its respective configuration. The
y-axis shows the system load in linear scale and end-to-end
latency in logarithmic scale. The end-to-end latency is the
amount of time between an image being sent from an end-
point and receiving the results, after it has been processed.
The system load is the total frequency of the images that are

Figure 3. Results from the original Continuum paper, using
a frequency of 5 images per second.

1 2 4 8 1 2 4 7 10%

100%

200%

300%

400%

500%

Sy
st

em
 L

oa
d

System Load

102

103

104

105

106

107

En
d-

to
-e

nd
 la

te
nc

y 
(m

s)End-to-end latency

Figure 4. Results from our setup, using a frequency of 5
images per second.

1 2 4 8 1 2 4 7 10%

100%

200%

300%

400%

500%

Sy
st

em
 L

oa
d

System Load

102

103

104

105

106

107

En
d-

to
-e

nd
 la

te
nc

y 
(m

s)End-to-end latency

Figure 5. Results from our setup, using a frequency of 3
images per second.

being generated divided by the time it takes to process an
image.

We also show the performance of an endpoint processing
its own data. Figure 5 shows the same, except that in this
case we generate 3 images per second.
Figure 3 shows the results that were presented in the

original Continuum paper. These results were made on three
Intel Xeon Silver 4210R machines with an image generation
frequency of 5 per second. In order to emulate resource
constrained devices, they reduced the cpu performance to
66% for edge nodes and to 33% for endpoints.

Results. From the results, we see that the overall per-
formance four our cloud and edge configuration is worse



Continuum on ARM

than is shown in the original paper when generating 5 im-
ages per second. In this case, our cloud configuration can
handle two endpoints. However, when using four endpoints
our system load increases beyond 100% and our end-to-end
latency skyrockets. As expected, our edge configuration per-
formance worse and we see the same pattern when using
two endpoints.

In contrast, the Continuum paper can handle 4 endpoints
in their cloud configuration without an increase in latency
or going beyond 100% of their system load. Also, while their
edge configuration seems to have reached its limit when us-
ing 2 endpoints, their latency and system load is significantly
lower than our results when using 2 endpoints. However,
Our results are not always worse than what was found in the
Continuum paper, for our endpoint configuration we per-
form significantly better than was found in the Continuum
paper

When generating 3 images per second, we see a significant
performance increase for our cloud and edge configuration.
Our edge configuration can comfortably handle 4 endpoints
and our edge configuration can handle 2 endpoints without
an increase to end-to-end latency or going beyond 100% of
system load.

Endpoint configuration. The fact that our endpoint con-
figuration performs significantly better than was found in
the Continuum paper, seems to indicate that our ARM ma-
chines are performing better as endpoints than the emulated
endpoint machines from the Continuum paper. The Contin-
uum paper uses a third of a cpu core to emulate the slower
performance for endpoint nodes. Since our results show a
large difference in performance, we believe that this mea-
sure mostly caused the high system load and end-to-end
latency measured from the Continuum paper and that our
ARM machines perform better than that.

Cloud and Edge configuration. While our endpoints
perform better than was reported in the Continuum paper,
our cloud and edge nodes seem to performworse. This means
that the bottleneckmust lie within the node that is processing
the images. At the same time, the CPU we use for our cloud
nodes is significantly older and less powerful than the CPU
that was used by the Continuum paper. We therefore believe
that our result difference with our cloud configuration is due
to less powerful cloud nodes. For the edge configuration then
this is likely a similar cause. While a cpu quota for 33% was
too low for our ARM machines, a cpu quota of 66% seems
much higher than our ARM machines can perform.

Similarities. Our results also show some trends that were
found in the original Continuum paper. Just like the Contin-
uum paper, offloading to the cloud gives the lowest system
load. We also see that we can determine when the workload
becomes too much to perform real-time processing. We can
also change the workload based on the image generation

frequency to manage more endpoints. Another similarity is
that our end-to-end latency increases significantly when the
system load goes beyond 100%.
These similarities indicate that performance trends that

are discovered on emulated hardware can also be present
on real hardware. This result is interesting because we have
nodes that perform both better and worse compared to the
Continuum paper. Therefore, we argue that using emulated
hardware can effectively be used to identify performance
trends, although obtaining accurate absolute performance
metrics would be much more challenging.

7 Conclusion
We added ARM support for Continuum and developed a
design for evaluating Continuum on resource constrained
devices. Due to the use of network storage, the storage for
our devices is also reliable and easily manageable.We also up-
dated the scheduler for Continuum to provide more control
on the allocation of nodes to our machines.
We mentioned some issues that we found while adding

ARM support for Continuum and discussed how we solved
them. These can help as pointers for other developers who
are seeking to provide support of another architecture to
Continuum. We also mentioned some issues that we found
while evaluating Continuum on ARM devices and discussed
possible remedies.
We then evaluated Continuum on resource limited de-

vices and found similar trends in our results. We therefore
conclude that benchmarking a system on emulated hard-
ware can show trends in the results that are consistent on
real hardware. However, emulated hardware is not ideal for
measuring performance in terms of absolute numbers.

References
[1] Jansen, M., Al-Dulaimy, A., Papadopoulos, A. V., Trivedi, A., &

Iosup, A. (2022). The SPEC-RG Reference Architecture for the Edge
Continuum. arXiv preprint arXiv:2207.04159.

[2] Cao, Keyan, et al. "An overview on edge computing research." IEEE
access 8 (2020): 85714-85728.

[3] Docker. "Docker manifest," https://docs.docker.com/engine/
reference/commandline/manifest/, accessed: 2022-08-29

A Example configuration

[infrastructure]
provider = qemu

infra_only = False

cloud_nodes = 1
edge_nodes = 1
endpoint_nodes = 7

cloud_cores = 4
edge_cores = 2
endpoint_cores = 1

https://docs.docker.com/engine/reference/commandline/manifest/
https://docs.docker.com/engine/reference/commandline/manifest/


Felix Goosens

cloud_quota = 1.0
edge_quota = 1.0
endpoint_quota = 1.0

cpu_pin = False

network_emulation = True
wireless_network_preset = 4g

netperf = False

external_physical_machines = ubuntu@192.168.0.30,
ubuntu@192.168.0.31,ubuntu@192.168.0.32

custom_scheduling = True
arm_edge = False

[local]
cloud_nodes = 1
edge_nodes = 0
endpoint_nodes = 0

[ubuntu@192.168.0.30]
cloud_nodes = 0
edge_nodes = 0
endpoint_nodes = 3

[ubuntu@192.168.0.31]
cloud_nodes = 0
edge_nodes = 0
endpoint_nodes = 3

[ubuntu@192.168.0.32]
cloud_nodes = 0
edge_nodes = 1
endpoint_nodes = 1

[benchmark]
resource_manager = kubeedge

docker_pull = False
delete = True

application = image_classification
frequency = 3


	Abstract
	1 Introduction
	2 Background
	2.1 Edge Computing
	2.2 Continuum

	3 Design
	3.1 Network Storage
	3.2 Scheduler

	4 Continuum on ARM
	5 Experimental setup
	5.1 Issues with continuum

	6 Evaluation
	7 Conclusion
	References
	A Example configuration

