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Abstract

Ultra-low-latency and high-throughput mobile networks are essential for a large

number of emerging mission-critical applications, including autonomous vehi-

cles or virtual reality. As these applications at least partially rely on computa-

tionally heavy machine learning algorithms, task offloading within cloud or edge

computing paradigms often becomes essential to fulfill application compute re-

quirements, making network performance critical for achieving low response

latency. To support this low-latency task offloading, starting from 5G and con-

tinuing into 6G, cellular networks are becoming increasingly more integrated

with the cloud computing forming a digital continuum. Digital continuum

offers near-infinite deployment possibilities, each with a unique set of com-

pute and network trade-offs. Therefore, performance evaluation within this

heterogeneous infrastructure requires a careful consideration of both compute

and network components. There is; however, no tool that can be used to

accurately explore the trade-offs and make informed decisions regarding the

digital continuum deployments and the infrastructure itself. In this paper, we

cover this gap. We design and implement a 6G testbed with state-of-art

compute and network components empowering informed exploration of digital

continuum deployments and infrastructure itself. We publish the testbed as

an extendable open-source artifact. Allowing the users to use the testbed

with a wide range of network configurations, we design a method to collect the

performance data from existing network setups and apply it to construct an

open-source cellular network trace archive containing the performance

data of state-of-practice Dutch network infrastructure. Finally, we evaluate

the performance of state-of-practice network and compute infrastructure with

a prominent 6G use-case - ML applications - and show that 6G goals can be ful-

filled only though a careful consideration and improvements to both compute

and network infrastructures.
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Introduction

1.1 Context

Over the past decade, digital infrastructure has become essential for a large number of

mission-critical services. Those services range from energy to transportation, education,

finance, and many others. In a recent report, the Dutch Ministry of Economic Affairs and

Climate outlined a development of digital infrastructure as one of the core policies (1).

Mobile networks is an essential component of modern digital infrastructure, allowing for

digital services to be run without restricting a user’s mobility to a singular wireless access

point. Mobile networks are used by over 4.6 billion people globally (2), and in some de-

veloping areas with no home-wired internet access, mobile networks constitute a primary

means of accessing digital services. In the Netherlands, mobile networks are so ubiquitous

that every Dutch citizen has on average 1.4 SIM cards (3). Emerging low-latency appli-

cations, such as augmented reality or autonomous vehicles, are therefore likely to be used

through mobile networks. Furthermore, for some applications, such as autonomous vehicles

or augmented reality, mobile networks are essential in fulfilling their mobility requirements

- application semantics assumes that the endpoint devices stay portable and thus must not

be restricted to a single wireless access point. These novel applications pose increasingly

strict latency and bandwidth requirements, with end-to-end latency, for some, reaching as

low as 10 ms (4) and requiring minimal jitter. This is a very challenging goal considering

the inherent high jitter and high latency associated with wireless transmission. Avoiding

the network, by performing computation on the endpoint device, becomes increasingly dif-

ficult as the computational power required by some deep learning models is already orders

of magnitude higher than what endpoint devices can offer (5). With computational de-

mands for deep learning model training doubling every 5.9 months (6), the gap between
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Figure 1.1: Transition to task offloading architecture as a result of an increase in
co33mputational demands.

the endpoint hardware capabilities and state-of-the-art machine learning algorithms con-

tinues to increase. Due to this, the novel AI-based applications are likely to employ the

task offloading architecture within the cloud computing paradigm, as shown in Figure 1.1.

There, a remote server connected to the endpoint via a network hosts a computationally-

heavy back-end, benefiting from higher compute resources available. To accommodate this

low-latency task offloading, starting with 5G, and continuing in 6G, cellular networks are

becoming more integrated into cloud and edge computing paradigms, creating a digital

continuum. Digital continuum is an ecosystem of interconnected heterogeneous devices,

each offering a unique set of compute and network trade-offs (7). With more distant

computing services, such as cloud, the available compute capacity is likely to increase;

however, as the geographical distance to those nodes increases, the network access latency

increases as well.

1.2 Problem Statement

With the variety of digital continuum infrastructure configurations and a number of emerg-

ing low-latency applications, each with its own set of compute and networking require-

ments, digital continuum performance evaluation becomes increasingly difficult. As with

the increase in computational complexity of ML algorithms, the compute becomes an in-
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1.3 Research Questions

creasingly significant component, digital continuum performance evaluation must consider

both network and compute. Mathematical modeling of an end-to-end system is not fea-

sible due to non-linear interaction of system components, which includes hardly predictable

phenomena such as temporal network outage or network hand-offs impacting the end-to-

end system performance. An additional challenge comes from high mobile network jitter

inherent to wireless communication. To enable 6G stakeholders to make informed deci-

sions on digital continuum infrastructure, a 6G testbed is needed. This 6G testbed should

enable a rapid iteration over digital continuum network and compute components to find

the optimal configuration while taking into account the application’s unique network and

compute requirements. There are two types of testbeds, hardware testbeds and software

testbeds. Hardware testbeds, while offering more accurate results, are currently unfeasible

due to the current lack of 6G hardware. In anticipation of 6G hardware, the 6G software

testbed that offers a rapid, and flexible exploration ground, allowing for performance

evaluation without binding the network to a specific hardware, is essential for an early-

stage 6G development. There is, however, currently no 6G testbed that stakeholders can

use to make informed decisions regarding the trade-offs offered by different components of

the digital continuum infrastructure. In this paper, we address this problem by developing

a 6G testbed with jitter-aware network simulation capabilities, which capture the inher-

ent long- and short-term performance variability characteristic of wireless networks, and

enable rapid and flexible exploration of digital continuum infrastructure configurations.

We publish this testbed as an easy-to-use and further extendable by arbitrary use-cases

open-source artifact on GitHub. Enabling the users to conduct performance evaluation

with a variety of network setups, we construct a method to measure the performance of

existing networking setups, and apply it to create a cellular network trace archive - an

open-source collection of network performance data - containing the performance traces on

the state-of-practice Dutch network infrastructure. Conducting an evaluation, we use the

6G testbed and collected network performance traces to determine the impact of the cel-

lular network on ML applications. We find that fulfilling the 6G goals will require careful

consideration and a number of improvements to both compute and network components

of digital continuum infrastructure.

1.3 Research Questions

Main RQ: How do we facilitate the evaluation and exploration of 6G-enabled applications

in the digital continuum?

3
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1. INTRODUCTION

RQ1 How to design a 6G testbed? To enable the digital continuum, trade-off exploration,

we design a tool - 6G testbed. The tool contains both compute and network

components, accurately capturing the digital continuum performance.

RQ2 How to implement a 6G testbed? Enabling the digital continuum trade-off exploration

for 6G stakeholders, we implement a tool - 6G testbed - and publish it as an open-

source artifact (GitHub) that can be used for arbitrary user application and digital

continuum configuration out-of-the-box.

RQ3 How to characterize network performance? Enabling users to test the performance

of various network configurations, we (i) construct a method to collect performance

data of real-world network setups, (ii) use it to construct an open-source cellular

network trace archive, and (iii) characterize the collected network traces outlining

several system-level performance trends and limitations.

RQ4 What is the impact of cellular networks on ML applications running in the digital con-

tinuum? Using a constructed testbed and collected network performance traces, we,

evaluate the impact of cellular networks on ML applications under different condi-

tions, including: cellular network technology, offloading location, executed workload,

and network load.

1.4 Research Methodology

(High-level overview) To answer the main research question - “How do we facilitate the

evaluation and exploration of 6G-enabled applications in the digital continuum? ” - (i), we

begin by answering RQ1 - “How to design a 6G testbed?” - and RQ2 - “How to implement

a 6G testbed?” - by designing (i) and implementing the 6G testbed. Then, answering

the RQ3 - “How to characterize the performance of the digital continuum networking?”

- we construct a method for collecting network performance data for existing network

setups and use this method to construct an open-source cellular network trace archive

and outline the system-level limitations of modern networking infrastructure. Finally,

answering the RQ4 - “What is the impact of cellular networks on ML applications running

in the digital continuum?” - we validate the 6G testbed design by evaluating, using the

collected performance traces, the state-of-practice network infrastructure with a prominent

6G use-case - ML applications.
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1.5 Thesis Contributions

(RQ1) To design a 6G testbed, we follow the AtLarge design process (8) continuously

iterating through (i) problem analysis, (ii) design requirements, (iii) prototype, and (iv)

validation. Designing 6G compute component, we base ourselves of the peer-reviewed

SPEC-RG compute continuum reference architecture (7). Constructing the design of

jitter-aware and flexible network simulation, we taxonomize end-to-end network path

into core and last-mile network paths, and represent each in terms of their network-layer

performance.

(RQ2) To implement a 6G testbed, we follow a “A Philosophy of Software Design” by

John Ousterhout (9), focusing on implementing deep modules with simple interfaces. Im-

plementing the 6G testbed, we leverage and integrate peer-reviewed compute continuum

benchmark (10) and a state-of-the-art jitter-aware network simulation (11). Following

the principles of open science, we publish the implementation as an open-source GitHub

artifact.

(RQ3) Constructing the method for performance collection, we follow the end-to-end net-

work path taxonomy constructed in answering the RQ1. Collecting a jitter-sensitive

mobile network performance, we use state-of-the-art tools that produce traces at a granu-

larity of individual packet transmission time, accurately capturing the network performance

variability. We validate the method by collecting performance traces of the existing LTE

and 5G Dutch networking infrastructure. For the core network, we collect the latencies to

deployment locations following the taxonomy specified by Ali-Eldin et al. (12). Following

the principles of open science, we publish the performance traces as an open-source cellular

network trace archive. We characterize the performance of collected traces and identify

system-level performance trends and limitations.

(RQ4) To evaluate the testbed design and implementation, we use the collected traces to

evaluate the effect of the state-of-practice networking on a prominent 6G use case: AI-based

workloads. Conducting the evaluation, we design and execute a number of experiments

based on state-of-the-art field practices and design methodologies (13) and find the effect

of changing (i) cellular network technology, (ii) deployment location, (iii) workload, and

(iv) network load.

1.5 Thesis Contributions

This thesis presents a number of contributions (C):
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1. INTRODUCTION

(C1) Answering the RQ1 and RQ2, we are the first to design, implement, and publish

as an open-source artifact a general-purpose 6G software testbed. In comparison to ex-

isting compute continuum testbeds (10), this testbed includes the jitter-aware network

simulation, allowing an accurate exploration of both network and compute components.

We publish the testbed as an easy-to-use and extendable open-source artifact on (GitHub)

(C2) Answering the RQ3, we the first to compile and open-source cellular network trace

archive containing the state-of-practice (as of Jul. 2025) LTE and 5G network perfor-

mance traces. We are also the first to characterize those traces that outline system-level

performance trends and limitations.

(C3) Answering the RQ4, we are the first to perform an experiment-based evaluation

of state-of-practice digital continuum infrastructure on a prominent 6G use-case - AI-

based applications. Based on the results we are the first to derive a number of several

experimental-based insights and challedges for 5G to 6G transition.

1.6 Societal Relevance

This work goes in line with the Dutch Computer Systems Manifesto (14) and addresses the

goals of manageability and responsibility of ICT infrastructure. The ICT infrastructure

became essential for a large share of Dutch GDP and is a substantial requirement for many

jobs (14). The dependence of our society on the ICT infrastructure makes the performance

and reliability of that infrastructure an important concern for Dutch society. The result

of this thesis - 6G testbed - is a tool allowing for testing different configurations of ICT

infrastructure and testing deployments on top of ICT infrastructure. The 6G testbed is a

tool for the management of ICT infrastructure with the goal of optimal performance

and reliability.

1.7 Plagiarism Declaration

This thesis work is my own work, is not copied from any other source (person, Internet, or

machine), and has not been submitted elsewhere for assessment.

1.8 Thesis Structure

The thesis follows a linear structure and is conceptually divided into two parts as shown

in Figure 1.2. Preceding the thesis contributions is the 2 background section containing
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the preliminary background for the reading. The sections describe Continuum - a peer-

reviewed compute continuum benchmark (10) - and MahiMahi - a record-replay tool for

accurate emulation of wireless link performance. The A first part of the thesis contains

3 Chapter 3 - Design (3) - and 4 Chapter 4 - Implementation (4). This part focuses

on the design and implementation choices of the 6G testbed itself. The 2 Design chapter

focuses on the requirements and describes the high-level design choices satisfying the posed

requirement. The 3 Implementation chapter focuses on the instruments used and the

implementation choices employed to fulfill the design. The B second part of the thesis

focuses on the application of the 6G testbed, showcasing how the testbed can be used for

the modern networking infrastructure. The second part of thesis contains 5 Chapter 5 -

Data Collection (5) - and 6 Chapter 6 - Evaluation (6). The 5 Chapter 5 focuses

on the method and the network performance traces collected. The 6 Chapter 6 uses the

6G testbed and the collected performance traces to evaluate the performance limitations

of both compute and network components from the perspective of real-world applications.

7



1. INTRODUCTION

This chapter as well, outlines the main points of actions and lines of research for the 6G.
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2

Background

In this section, we outline the preliminary context of the paper. We begin by introducing

a compute continuum reference architecture and benchmarking tools in Section 2.1, and

then move on to network simulation tools - tc and Mahimahi - in Section 2.2.

2.1 Compute Continuum

This section provides an introduction to the existing work on the compute continuum,

which we later use in our design and implementation of the 6G testbed. Our 6G testbed

design is based on SPEC-RG, a peer-reviewed compute continuum reference architecture

(7) that is shown in Figure 2.1. The architecture outlines the responsibilities of three

different device types - endpoint, edge, and cloud - and includes the application, data

pre-processing, infrastructure, resource management, etc. On top of that, build a peer-

reviewed compute continuum benchmark - Continuum (10) - which we use in the imple-

mentation of the 6G testbed. Continuum allows rapid, extendable benchmarking of user

applications on user-defined compute continuum infrastructure configurations. Continuum

allows changing the number of endpoints, cloud, and edge nodes, and, for each node, al-

lows changing the number of CPU cores, amount of memory, and their quota. For resource

management, Continuum uses state-of-the-practice Kubernetes, and, ensuring benchmark

extensibility for future use cases, it runs the applications as Docker containers, ensuring

compatibility with arbitrary user software and the set of dependencies.

2.2 Network Simulation

This section provides the introduction into existing tools for network simulation employed

in the implementation of 6G testbed - traffic control (tc) and MahiMahi. TC (15) is a

9



2. BACKGROUND

Figure 2.1: SPEC-RG reference architecture (7).

built-in Linux tool allowing the simulation of network latency and bandwidth defined via

some statistical distribution such as normal, uniform, or Pareto. TC is already used in

Continuum (10) to simulate the network latency, and, in our implementation, we use it to

simulate static core network latency. The biggest limitation of tc is its inability to simulate

dynamic network latency and bandwidth, which does not follow under any aforementioned

distributions. Therefore, high-jitter links such as wireless links cannot be accurately sim-

ulated using tc. MahiMahi (11) is a record-replay tool for network simulation which we

use to simulate the mobile network. Of our particular interest is MahiMahi’s mm-link,

which simulates the network at per-packet level, accurately reflecting the link performance

at a millisecond granularity. MahiMahi is configured via uplink and downlink traces, with

each containing data on packet delivery opportunities, millisecond-granularity timestamps,

at which packets can cross successfully the mobile network hop.

10



3

Design

In this section, we design a 6G testbed and answer an RQ1 - “How to design a 6G testbed? ”.

The primary 6G testbed goal is to allow rapid performance evaluation under flexible dig-

ital continuum configurations. With an ever-increasing coupling of telecommunications

into cloud and edge computing paradigms, combined with increasing compute demands

by machine learning algorithms, the flexible and rapid digital continuum performance

evaluation encompasses both network and compute components. 6G testbed offers value

to 6G stakeholders by enabling the exploration and informed decisions of digital contin-

uum infrastructure trade-offs with the goal of finding optimal configurations. We begin

the section by identifying, based on the problem description in Section 1.2, 6G testbed

requirements in Section 3.1. Based on derived requirements, we propose a 6G testbed

design, which is summarized in Section 3.2. Later sections - Section 3.3 and Section 3.4

- provide a further description of novel 6G testbed components - network simulation and

ML-based workloads.

3.1 Requirements Analysis

With a near-infinite number of digital continuum infrastructure possibilities, a tool that

allows for a rapid and flexible performance evaluation to find optimal configurations be-

comes critical. As novel applications, such as autonomous vehicles or VR applications,

pose increasingly stricter latency requirements and rely, at least partially, on increasingly

computationally heavy ML algorithms, making compute a considerable part of end-to-end

latency, a tool for digital continuum performance evaluation must incorporate both com-

pute and network components. With digital continuum offering near-infinite deployment

possibilities, each with a unique set of compute and network trade-offs, the tool must

11



3. DESIGN

remain flexible, allowing the final user to replicate the real-world conditions of a partic-

ular deployment configuration. To replicate compute conditions, the user must be able to

configure the hardware conditions of both the endpoint and cloud, and edge nodes by

modifying parameters such as the number of CPU cores or the amount of memory. Repli-

cating the geographical distribution of the remote node, the user should, as well, be able

to represent the distance to the deployment location - edge, cloud - through the network

latency experienced when traversing the core network path between the endpoint and the

remote node. With a variety of availiable last-mile network designs and, yet, no clear vi-

sion on the upcoming 6G standard, the testbed must keep the mobile network flexible and

stay abstract from its design or implementation details. To reflect the real-world mobile

network jitter and accurately represent the edge cases, such as temporary network outages

due to increased congestion, frequency band change, or network handovers, the user should

be able to configure the mobile network performance at a millisecond level of granularity.

For the testbed to have a high discriminative power for real-world use cases, the results

must be reproducible and based on standardized workloads relevant for 6G use-cases.

Workloads should include those yielding high and low network bandwidth requirements,

testing for both bandwidth and latency. For further extensibility, we require workloads to

stay flexible by allowing users to submit arbitrary containerized workloads.

Therefore, based on our problem definition, we pose the following set of 6G testbed

requirements (TR):

(TR1) Configurable CPU core count and memory. The testbed must allow the user

to replicate real-world node hardware capabilities by configuring the node CPU count and

amount of memory.

(TR2) Configurable distance to a remote node. The testbed must allow the user

to configure the distance to a remote compute node by configuring a latency experienced

when traversing a core network path from the endpoint to a remote compute node.

(TR3) Implementation-agnostic network simulation. The last-mile network simu-

lation must rely solely on the network layer performance.

(TR4) Millisecond-granularity network configuration. To reflect the real-world mo-

bile network jitter and the edge cases like temporary network outage, increased congestion,

or frequency band switch, the user must be able to configure mobile network performance

at millisecond granularity.

12



3.2 Design Overview

 + cellular network

Figure 3.1: High-level design overviews

(TR5) Reproducibility. To reliably evaluate the end-to-end performance of 6G design

and allow the comparison between various designs, the evaluation results must be repro-

ducible.

(TR6) Standardized and relevant use-cases. Ensuring the relevance of testbed results

for real-world use-cases, the workloads must be based in prominent 6G use-cases.

(TR7) Containerized workloads. To allow users to further extend workloads with their

use-cases with unique set of dependencies, the workloads must be executed as containerized

applications.

(TR8) Collected network and compute metrics. To allow the identification of perfor-

mance limitations of separate system components, the testbed should collect both compute

and network metrics.

3.2 Design Overview

13
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Figure 3.2: Design overview.

This section defines a high-level design that fulfills the 6G testbed requirements defined

in Section 3.1. To fulfill the requirements (TR1), (TR2), and (TR3), and allow the max-

imum flexibility supporting the goal of rapid and flexible evaluation of digital continuum

performance, we take the conceptual approach of designing a software testbed with con-

figurable compute and networking components. An example configuration of 6G testbed

compute and network components is shown in Listing 1. A high-level design overview,

building on top of the peer-reviewed compute continuum benchmark in shown Figure 3.1.

Our 6G testbed supports endpoint, edge, and cloud deployments, extending the compute

continuum benchmark functionality with a jitter-aware network simulation, configuring

the network performance at a millisecond-level granularity. We dive into the design of

jitter-aware network simulation in Figure 3.2. Meeting the requirements (TR3) and

(TR4), we allow the user to submit C network trace where every line represents a mil-

lisecond timestamp when an maximum transmission unit (MTU) sized packet (1500 bytes

(11)) can cross the mobile network link. This abstraction reflects only a final performance

perceived by the endpoint network layer and follows modern medium access control time

division multiplexing-based mechanisms used by modern 5G infrastructure (16), which al-
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3.2 Design Overview

1 [compute]

2 cloud

3 count=1

4 cpu_count=2

5 ram=2G

6 edge

7 count=1

8 cpu_count=2

9 ram=1G

10 endpoint

11 count=1

12 cpu_count=1

13 ram=512M

14 [network]

15 core

16 edge_deployment: base

17 cloud_deployment: regional

18 mobile

19 up_trace = /Verizon/LTE.up

20 down_trace = /Verizon/LTE.down

Listing 1: Configuration file structure

low the endpoint to hog the channel for at most an MTU-sized frame transmission. As a

result of observed, on modern cellular networking infrastructure, performance disparity be-

tween the uplink and downlink (17), the user can submit two traces - uplink and downlink

traces. The traces are re-playable, ensuring the reproducibility of results and meeting

the requirements (TR5). Meeting the requirement (TR2), we allow the users to configure

the core network latency experienced when transmitting from B cell tower to either E

edge or H cloud nodes. Finally, to meet the requirement (TR7), we allow the end use

to extend the workloads by submitting a containerized applications to be executed on all

endpoint, edge, and cloud nodes. To meet the requirement (TR6), we, along with testbed,

provide several relevant ML-based workloads packaged as containers. We further describe

these in Section 3.4. During the workload execution the testbed collects both the compute

and network metrics meeting the requirement (TR8). We further describe these metrics

in Section 3.5.

15
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Figure 3.3: Network simulation overview.

3.3 Network simulation

In this section, we dive into the design of network simulation and show how it meets the

requirements (TR2), (TR3), (TR4). To meet both requirements (TR2) and (TR4), we

separately simulate the core and cellular networks. We motivate this design decision by

performance disparity between the core and last-mile networks with cellular network show-

ing lower bandwidth and higher jitter (4). Meeting the requirement (TR4) we configure a

jitter-aware cellular network simulation through uplink and downlink traces. Within

the traces, the user configures the timestamps at the millisecond level of granularity,

at which an MTU-sized packet can cross either the up- or down- links. There can be

either no packets that can cross the link at a particular millisecond or there can be one

or more packets that can traverse the link at a particular timestamp. At each delivery

opportunity, the endpoint can transmit at most an MTU-sized packet since the MAC-

layer protocols, commonly adopted by modern 5G infrastructure, assume the endpoint(s)

hogging the channel for a time slot allowing to transmit at most an MTU-sized packet

(18). The simulation, therefore, meets the requirement (TR2) by depending only on the

performance perceived by the network layer, represented by timestamps at which at most
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Table 3.1: Workloads.

ID Name Uplink Downlink Compute requirements

T1 Image classification Image Text Low

T2 Text translation Text Text High

an MTU-sized packet can cross the link. To archive this functionality, up- and down- link

traces are read by the D mobile network simulation component, which buffers the packets

and waits for the next delivery opportunity to release the packet to be sent or received. If

the packet is larger than an MTU, it will consume multiple delivery opportunities before

it can be either sent or received. Apart from mobile network simulation component, to

meet the requirement (TR2), we introduce a core network simulation component, which

can be used can be used to set up a bidirectional static latency representing the distance

in the core network to the F cloud or edge node. This core network simulation archives

the required functionality by buffering the packets and withholding those from being sent

or received based on the internal timer.

3.4 Workloads

To meet the requirement (TR6), in this section, we design two 6G testbed workloads and

outline their relevance for the future 6G use-cases. We chose ML-based workloads, as AI

applications are one of the core 6G use-cases, with a wide range of opportunities for complex

data processing, new content generation, and others (19). Popular use cases include video

and image enhancement, text generation, and object detection. Our workloads are intended

to remain representative of these use-cases. For comprehensiveness, we design two different

workloads with distinct tranmitted data types - image and text - requiring different network

bandwidth and targeting transmission patterns that are bandwidth and latency bound.

To keep the network load adjustable, as a proxy for network load exerted by workloads,

each workload has a request frequency parameter. Designed workloads are summarized in

Table 3.1. Workloads follow the same design that is summarized in Figure 3.4. Workload

design employs a task offloading architecture where a computationally heavy back-end is

offloaded to a remote F cloud or endpoint node that hosts a computationally demanding

D deep learning model. The A endpoint device produces an E input data - either C

image or textual data - and B pre-processes the data. Pre-processing is a computationally

17
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Figure 3.4: Workload design.

un-intensive task which, for example, can be image normalization or text tokenization. Pre-

processed input data travels from the endpoint device to the remote node via a network,

and then, after the data is processed on the remote node, the G output is sent back to

the endpoint device.

3.5 Metrics

In this section, we outline a number of compute and network metrics that we collect and

report with a goal of meeting the requirement (TR8). When recording the metrics, we,

in particular, are interested in their median value reflecting the average performance and

in the P99 value reflecting the performance variability. The metrics are summarized in

Table 3.2

(M1) Uplink network latency Due to the difference in uplink and downlink network

performance and the difference for some applications in the network load exhibited on

network up and down links, we separately record the latency experienced both by up- and

down- link transmissions

18



3.5 Metrics

Table 3.2: Metrics.

ID Name Compute / Network

(M1) Uplink latency
Network

(M2) Downlink latency

(M3) Pre-processing latency
Compute

(M4) Server-side processing latency

(M2) Downlink network latency. See (M1).

(M3) Pre-processing latency Due to the difference in computational power between

the endpoint and the remote node, the pre-processing latency, even for computationally

un-intensive tasks, is essential to record.

(M4) Server-side processing latency With an increase in the compute requirements

of ML applications, the server-side compute latency becomes essential to consider.
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4

Implementation

In this section, we implement an easy-to-use and adaptable to user’s unique use-case

6G testbed design for which we defined in Chapter 3. The final implementation can be

used out-of-the-box and extended for any use-case without requiring any change to the

internal structure of testbed. This is the implementation we later use to conduct the

experiments in Chapter 6. As the result of this section, we answer a research question

RQ2 - “How to implement a 6G testbed? ”. We begin this section by providing a general

implementation overview in section 4.1. Then, we dive deeper into the implementation of

networking simulation in Section 4.2 and Section 4.3. Finally, in Section 4.4 we go over

the implementation of workloads. Following the principles of open science, we publish the

implementation as GitHub open-source artifact that allows for the full reproduction of

results presented in the paper.

4.1 Implementation Overview

Fulfilling the design presented in Chapter 3, our implementation of the 6G testbed is based

on the Continuum implementation (10). Continuum is a peer-reviewed benchmark for com-

puting continuum deployments. This benchmark takes care of provisioning a configurable

A endpoint, B edge, and cloud compute infrastructure through QEMU virtual machines,

allowing the end user to configure the 6G testbed compute for their particular infrastruc-

ture use case. Within the all the nodes, the user can benchmark an arbitrary workload by

submitting it as a C Docker container, allowing the user to extend the tested workloads

without needing to change the internal structure of 6G testbed. We chose Docker as Docker

containers are an industry standard in terms of application containerization among various

21
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Figure 4.1: Implementation overview.

cloud infrastructure providers (20). For the use-case discussed in this paper - ML appli-

cations - the endpoint is responsible for running the application front-end and the remote

node is responsible for running application back-end containing a computationally-heavy

deep learning model. The deep learning model, is implemented on top of the either Tensor-

flow or PyTorch libraries - both state of practice deep learning libraries (21) (22). Following

the network simulation design, presented in Section 3.3, we separately simulate core and

mobile networks. To simulate the mobile network, we redirect the default Linux traffic

path from going directly to the Linux kernel to going through a D MahiMahi - a state-of-

art network simulation tool allowing for network record-replay at millisecond-granularity

level (11). We discuss the applied routing rules used to archive this in Section 4.2. The

MahiMahi container simulation, is based on the user-provided up- and down- link satu-

rattr traces, which define the delivery opportunities as timestamps at which at most an

MTU-sized packet can cross the link. Allowing the container to act as a pass-through for

both ingress and egress traffic, we make a number of changes to the original MahiMahi

implementation which we describe in Section 4.3. After leaving the MahiMahi container,

the packets are redirected through E Linux kernel network stack where, using built-in

traffic control (tc) tool, we apply a static core network latency. We simulate the core

network using the tc instad of mm-delay for the reasons of compatibility with previous

Continuum versions which use tc for static jitter-unaware network simulation. After, the

traffic is redirected to VM network interface card (NIC) from where it is forwarded to the

B cloud or edge node. To ensure that the correctness of latency simulation, the imple-

mentation assumes that both the endpoint and the cloud and edge VMs are hosted on the
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Figure 4.2: Implementation routing overview.

same physical machine and there is disregard-able latency for endpoint to cloud or edge

transmissions.

4.2 Routing modifications

To ensure that the traffic is routed through the MahiMahi container and mobile network

simulation is applied both for ingress, and egress traffic, we apply a number of IP route

and NAT rules. In comparison to modifying the Linux kernel traffic rules through tools

like eBPF, our solution applies traffic rules on top of the Linux kernel. This makes the

solution easier and, as relying only on user-level OS API, ensures easier compatibility with

future Linux versions. We visualize our solution in Figure 4.2. The simulated ingress

traffic is redirected by using a D pre-routing NAT box, where the destination is set to

the IP of MahiMahi container. We take this approach as we cannot rewrite the routing

table for destined for the local IP addresses. Within the container, based on the origin IP

address, we separate the traffic and redirect it to the A application container. The egress
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traffic, on the other hand, is redirected through MahiMahi container, using C IP route

table rules. Within the MahiMahi container, we MASQUERADE the traffic substituting

the source IP address with the address of MahiMahi container to ensure that upon traffic

redirection from MahiMahi container back into the endpoint VM, we are able to distinguish

that traffic from the traffic that still has to go through a MahiMahi network simulation.

After that, the traffic is redirected into F Linux netstack where the core network latency

is applied and the traffic is sent out from endpoint VM.

4.3 Mahimahi modifications

By default MahiMahi is not implemented to act as a pass-through container, and it applies

the network simulation only for applications that run inside the container. However, for

compatibility reasons with the rest of Continuum project, we modify the MahiMahi imple-

mentation to act a pass-through container. In this paper, simulating the mobile network

link, we are particularly interested in the container spawned by the mm-link command.

For that, we start-up a MahiMahi container and make it run an empty application contin-

uously looping on sleep 10 shell command. MahiMahi has two queues for emulating the

traffic - the queue for uplink and the queue for downlink traffic. They are identical in their

internal structure; however, they operate on different traces. Using default MahiMahi im-

plementation for pass through traffic would result in mobile network traffic shaping being

applied twice instead of once. For example, for egress traffic, the mobile network shaping
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4.4 Workload implementation

Table 4.1: Workloads.

ID Name Uplink per re-
quest (bytes)

Downlink per
request (bytes)

Deep learn-
ing library

Model used

W1 Image classification 10K-100K 20 Tensorflow MobileNetV2

W2 Text translation 100-200 100-200 Pytorch MarianMT

rules will be applied both when traffic enters the container and when traffic leaves the con-

tainer. It is impossible to account for this by applying statistical modifications to uplink

and downlink network traces - the traces are different and we cannot assume the packet

ordering of ingress and egress traffic. To achieve a reliable mobile network emulation for

the Continuum use-case, we add an A address filtering component that allows to exclude

a list of sources and destinations from mobile network traffic shaping ensuring that the

traffic shaping rules are applies only once for both ingress and egress traffic. If traffic is not

filtered out, it first goes into the B link simulation queue. From the link simulation queue,

the traffic is dequeued by C a function that dequeues a packet of at most an MTU size. It

does it in accordance with uplink or downlink traces, which contain timestamps at which

an MTU-sized packet can successfully cross the link. After the packet is dequeued, it is

sent to the B out queue from which, via container kernel stack, it is forwarded towards its

destination. In case, however, the packet is filtered from mobile network traffic shaping by

the address filtering component, we put it directly into the out queue without first passing

it through the link simulation queue.

4.4 Workload implementation

We implement two different ML-based workloads with distinct send and receive data types

as designed in Section 3.4. We summarize the list of implemented workloads in Table 4.1.

The first workload - W1 image classification - sends uplink an image data and downlink a

data containing an image class. The uplink request size varies from around 10 kilobytes to

100 kilobytes, depending on the image size. The downlink response size stays constant to

20 bytes. The second workload - W2 text translation - sends uplink a textual phrase that

needs to be translated and receives back a translated phrase. The request and response

sizes vary depending on the length of the phrase but stay in the range of 100-200 bytes. All

the metrics are recorded using the Python time_ns() function. The underlying physical

machine or machines should be set up to guarantee VM clock synchronization. Architec-

turally, all workloads are implemented the same, and their implementation is summarized
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Figure 4.4: Workload implementation.

in Figure 4.4. For network communication, every workload uses uses MQTT protocol - a

state-of-the-practice low-latency application-level protocol for IoT devices (23). There, a

B request data is pulled from a A data bank one-by-one at configurable intervals. There,

it is passed through a C pre-processing component. Pre-processed data is then sent out

through the MQTT F publisher to the F MQTT broker hosted on the cloud or edge

node. The MQTT broker then redirects the data to the edge/cloud H subscriber, which

gives it to an application running a TensorFlow or PyTorch-based back-end. We record the

uplink network latency as the time it takes for a request to go from D endpoint publisher

to H cloud or edge subscriber. Whenever the result is computed, it is sent to the edge

or cloud G publisher, which sends it to the MQTT broker. The MQTT broker, in turn,

passes the data to the endpoint E subscriber. We record downlink request time as the

time it takes to go from G edge or cloud publisher to E endpoint subscriber.
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5

Cellular Network Trace Archive

This section defines and applies a method to collect network performance of existing net-

work setups. The result of this section is an open-source cellular network trace archive

containing the performance traces of the core and mobile Dutch network infrastructure.

We also conduct performance characterization of the collected traces, outlining several

system-level trends and limitations. We begin this section by defining a method used for

performance data collection in Section 5.1. We then outline the collected traces and motiva-

tion behind collecting those traces in Section 5.2. Finally, we characterize the performance

of those traces in Section 5.3.

5.1 Method

In this section, we define a method we use to collect performance traces of existing net-

working infrastructure. Due to the difference in bandwidth and jitter, we, following the

taxonomy introduced in Section 3.3, collect the core network and mobile network perfor-

mance data separately. Our method assumes that (i) core network jitter is insignificant

compared to mobile network jitter and (ii) that the mobile network has significantly lower

bandwidth compared to the core network.

We collect the mobile network performance data using the setup shown in Figure 5.1.

To collect data, at a A fixed location, the B user runs a C saturatr client. saturatr is

a tool that is used to collect MahiMahi compatible traces (11). It does so by saturating

the network between the client and the server with as many packets as the network can

handle and recording the packet arrival timestamp on the server side. It then treats the

difference between the timestamps of two consecutive packets’ arrival times as a ground

truth for the difference between two consecutive MTU-sized delivery opportunities. To

27
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Figure 5.1: Mobile network performance collection setup.

reliably saturate the link under constantly changing bandwidth conditions without causing

the cellular network provider to drop the packets, the computer running saturatr client is

connected to two phones: F device under test (DUT) and E the feedback device. To

saturate the link, the F DUT aims to maintain the sender queue between 0.75 and 3

seconds (11). To adjust the queue size under constantly changing network conditions,

the DUT uses the E feedback device, which receives the feedback on the packet 1-way

trip time. Packets from both devices travel to G cell tower, and from the cell tower

travel to H a remote node. Whenever the packet reaches the remote node, the received

timestamp is recorded. The difference between two consecutive timestamps is treated as

the ground truth for the intervals between two mobile network delivery opportunities. To

record downlink performance, the saturatr server, like saturatr client, maintains a I packet

queue that 0.75-3 seconds long. The satuatr client, in turns, records the timestamps at

which the packets are received and treats the difference between those as a ground truth
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Table 5.1: Mobile network data collection traces

Standard Obstacle Date Location Provider

LTE None

Jun. 17 52.320949, 4.875078 KPN
5G

Outside

Window

Table 5.2: Core network data collection.

Name Type Region RTT (12)

Base tower edge Edge Amsterdam, The Netherlands ∼ 1ms

EU-Central-1 Local cloud Frankfurt, Germany ∼ 10ms

EU-West-1 Regional cloud Paris, France ∼ 20 ms

US-Virginia-1 Transcontinental cloud Virginia, US ∼ 80 ms

for the intervals at which downlink packets can traverse the mobile network link.

To collect the core network performance data, we follow the taxonomy introduced in (12),

and collect the latency data to the edge, local, regional, and transcontinental clouds with

the expected set of latencies of less than 1, 10, 20, and 80 ms, respectively. To collect the

data, we run, from a client with a wired internet connection, a ping utility which records a

round-trip time (RTT) to a server by exchanging ICMPv4/6 packets. Our method assumes

that the core network has bidirectional equal latency and 1-way latency by dividing the

RTT by 2.

5.2 Tracing

The mobile network traces collected are summarized in Table 5.1. We collect mobile

network performance traces at a fixed distance of 230 meters from the nearest LTE/5G

cell tower. All traces are collected on the same day - Jun. 17th and at the same time

and within 2-hour window between 12:00-14:00. We collect the traces for both LTE and

5G, as these are, at the moment, the most used mobile network standards. For 5G, as

well, we collect the traces both with and without an obstacle in between the cell tower

and the DUT to explore how the cell network performance changes inside and outside the

buildings. All the traces are collected with the KPN infrastructure, as KPN (as of June

19th, 2025) does not limit the bandwidth of tethered devices, which is essential for our

network data collection method.
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Figure 5.2: Frankfurt, Germany (EU-
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Figure 5.3: Paris, France (EU-West-3)
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Figure 5.4: Virginia, USA (US-East-1)

Figure 5.5: Core network RTT distribution for different geographical destinations

We collect the core network traces using the public AWS ICMPv4 API. We summarize

collected core network latencies in Table 5.2. Following the expected RTT range, we iden-

tify the EU-Central-1, EU-West-3, and US-East-1 as local, regional, and transcontinental

cloud nodes. For the edge device, we assume that it will be located near a cell tower and

have a negligible core network latency. We collect the traces over multiple days to capture

the network performance, short-term, and long-term performance variability, including the

variability caused by daily differences in utilization between the peak and off-peak hours

and the differences caused by temporary changes in the BGP routing.
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Figure 5.6: 5G no obstacles uplink and downlink traces

5.3 Analysis

The core network latency data obtained for different deployment locations described in

Section 5.2 is shown in Figure 5.5. The data obtained demonstrates that, compared to the

current mobile network generation, the core network shows minimal jitter, with the ma-

jority of requests having similar RTT. However, there is still observable performance vari-

ability, with RTTs falling under a long right-tail distribution, which is a well-established,

by current academic literature, network latency distribution pattern (24). We can also

observe that there is a slight difference between the RTT recorded during the peak and

off-peak hours, which we hypothesize is a result of increased network congestion levels

and core network queue build-ups during the peak hours. It is also important to note

the presence of a binomial distribution of EU-West-3 RTT, which can be important for

some applications. We hypothesize that this variation in latency is due to the temporary

changes in BGP routing resulting in two different routes - a phenomenon well established

in the academic literature (25).

Mobile network performance data collected for LTE and 5G standard recorded with and

without window obstacle (as described in Section 5.2) is shown in Figure 5.8, Figure 5.7,

and Figure 5.6 respectively. The traces are not directly comparable, as during the record-

ing, we do not control for many compounding factors such as current network noise or

experienced network load, which can influence mobile network system-level performance.

From the traces, we can observe that the biggest difference between LTE and 5G system-

level performance comes from the increased download capacity - up to 200 Mbps for 5G

compared to only 80 Mbps for LTE. 5G upload capacity; however, is significantly higher

than LTE upload capacity only for the trace recorded without any obstacles between the
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Figure 5.7: 5G window obstacle uplink and downlink traces
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Figure 5.8: LTE uplink and downlink traces

endpoint and the cell tower - up to 75 Mbps for 5G compared to only 20 Mbps for

LTE. The trace recorded with a window obstacle between the endpoint and the cell tower

shows a similar to LTE uplink capacity, falling largely between 10 Mbps and 25 Mbps.

We hypothesize that this decrease in 5G upload capacity comes from the endpoint’s lower

energy available to for transmission in comparison to the cell tower. This results in a signif-

icant decrease in the bandwidth whenever an obstacle is present. We can, as well, observe

that all the traces have a high jitter, with network performance constantly changing in

unpredictable patterns. All the traces show upload speed to be significantly lower than the

download speed, highlighting the disparity between the downlink and uplink mobile net-

work performance. This difference is the most pronounced for 5G recorded with a window

obstacle, where the upload speed does not exceed 25 Mbps, while the download reaches

200 Mbps.
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Evaluation

In this section, using the 6G testbed designed and implemented in Chapter 3 and Chap-

ter 4, and using the cellular network trace archive constructed in Chapter 5, we evaluate

the impact of current and upcoming 6G cellular network generations on ML applications

under different real-world conditions. To do that, we attempt to answer the following

experimental questions:

(Q1) What is the impact of mobile network technology on end-to-end latency?

We evaluate the difference in end-to-end latency caused by a change in cellular networking

technology and demonstrate the need to explicitly address the variability of cellular network

performance. (Section 6.3)

(Q2) What is the impact of text and image-based AI-workloads? We evaluate

the difference in end-to-end latency caused by transmitting different data types - image and

text - and demonstrate how modern network standards scale under increased application

bandwidth requirements. (Section 6.4)

(Q3) What is the impact of offloading to edge, local, regional, or transcon-

tinental cloud? We evaluate the difference in end-to-end latency caused by a change

in offloading to edge or cloud offloading and demonstrate the need for close geographical

offloading for ultra-low-latency applications. (Section 6.5)

(Q4) What is the impact of an increase in network load? We evaluate the dif-

ference in end-to-end latency caused by increasing application bandwidth demands and

demonstrate a need for application-level congestion control mechanisms to tackle cellular

network performance variability. (Section 6.6)
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(Q5) What is the impact of projected 6G on end-to-end applications? We

evaluate the impact of projected 6G on end-to-end latency and show the need for multi-

component optimization for ultra-low latency applications. (Section 6.7)

We begin the section by defining the set of main findings in Section 6.1. Then, we discuss

the experiment setup used for obtaining results in Section 6.2 and discuss separately each

experiment in Section 6.3, Section 6.4, Section 6.5, Section 6.6, and Section 6.7.

6.1 Main findings

We summarize the following set of main findings (MF):

(MF1) In our setup, the uplink capacity became a limiting factor when considering the

end-to-end network latency for image classification workload. The uplink latency accounted

for over 90% of the total network latency for both LTE and 5G networks (Section 6.3).

(MF2) In our setup, textual data transmission results in a 1.5 time decrease in P99

network latency when compared to the transmission of uncompressed image data. This

highlights the importance of input data pre-processing with the goal of compression for

real-time applications (Section 6.4).

(MF3) In our setup, the 30-second drop of mobile network performance below a critical

value resulted in 200 times increase in experienced uplink latency for image classification

workload (Section 6.6). This highlights the importance of application-level congestion

control for real-time applications (Section 6.6).

(MF4) Our results suggest that achieving end-to-end latency requirements of novel appli-

cations such as autonomous vehicles or virtual reality requires not only improvements to the

network but also improvements to baseline CPU performance achieved in our setup. This

suggests that unlocking the novel low-latency applications requires an approach towards a

decrease in both network and compute latencies (Section 6.7).

6.2 Experiment Setup

As described in the introduction, we conduct a number of experiments to answer the

RQ4 determining the impact of cellular networks on the ML applications under different

conditions. The conditions include (i) mobile network technology, (ii) deployment location,

(iii) workload difference, and (iv) network load. We summarize the experiments and their
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6.2 Experiment Setup

Table 6.1: Experiments.

ID Focus Independent variable Section

E1 Impact of last-mile networking Last-mile network 6.3

E2 Impact of image and text-based workloads Workload type 6.4

E3 Impact of offloading location Core network 6.5

E4 Application scalability under increased load Network load 6.6

independent variables in Table 6.1. Unless otherwise noted, all the experiments employ

the image classification workload described in Section 3.4. As our primary goal is to

explore the impact of cellular network, unless otherwise noted, the workload is deployed

on the edge with no core network latency simulated (Section 5.2). Keeping the results up

to date with state-of-practice mobile network infrastructure, unless noted otherwise, we

use the cellular network trace with the highest recorded uplink and downlink capacities

- KPN 5G trace recorded with no obstacles between the endpoint and the cell tower

(Section 5.2). As the network is the primary focus of this work, we ensure that there

is always sufficient computing resources available for processing endpoint requests. In our

setup, we empirically find that this property holds if the request frequency is kept to 1

per second. In the first experiment, to identify the effect of mobile network technology,

we take the last-mile network as an independent variable. In the second experiment,

identifying the difference between image and text-based workloads, we take a workload

type as an independent variable. In the third experiment, identifying the difference caused

by changing offloading locations, we take the core network latency, used as a proxy for the

geographical distance to the offloading location, as an independent variable. In the fourth

experiment, identifying the effect of increased network load on application scalability, we

take the network load as an independent variable. We use the request frequency as a

proxy for network load. To ensure that there is enough compute capacity to process

all the requests, even if we saturate the cellular network with the requests, we use the

MahiMahi Verizon 4G trace (11) from 2016, which has lower, than those recorded by

ourselves downlink and uplink capacities. We empirically verify that for all the request

frequencies used in that experiment, the compute does not become a bottleneck. We run

all the experiments in a computer cluster at VU Amsterdam. Its hardware configuration

are summarized in Table 6.2. The cluseter experiments were run on a 20-core Intel(R)

Xeon(R) Silver 4210R CPU running at 2.40GHz and a total of 256 GB of memory. We

did not overclock the CPU throughout the experimentation. The installed Linux kernel

35



6. EVALUATION

Table 6.2: Experiment hardware.

Component Value

Core count 20
Memory 256 GB
CPU Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz

Endpoint
Core count 2
Memory 4 GB

Remote node (edge/cloud)
Core count 4
Memory 16 GB

is 5.4.0-193-generic, and the lsb version is Ubuntu 20.04.6 LTS. Determining the available

compute for the endpoint and the remote edge/cloud node, we used the default values for

the endpoint and cloud nodes provided by the Continuum (10) paper. For all experiments,

when considering a median or P99 latency decomposition, we consider the median and P99

values for each component separately, assuming that their performance is independent of

other components.

6.3 Network generation

In this section, we discuss the impact of mobile network technology on the ML application

performance. Obtaining the results, we compare the end-to-end latency and its decompo-

sition when executing the image classification workload with LTE traces and 5G traces,

which were recorded both with and without an obstacle in between the endpoint and the

cell tower. The traces are further discussed in Section 5.2. As a result we find that, in

our setup, the median end-to-end latency is largely determined by compute, which com-

prises up to 80% of end-to-end image classification request latency. However, consistent

among network standards was the issue of uplink performance variability. For P99 latency,

the last-mile network comprised up to 80% of the end-to-end image classification request

time with the uplink latency comprising up to 95% of the experienced end-to-end network

latency for an image classification request.

In Figure 6.1, we show the end-to-end latency for every image request. From the graph,

we can observe that, in our setup, the difference between the LTE and 5G is minimal,

and both deployment having a high performance variability with often latency spikes. We

can also observe that there is a plateau that limits the end-to-end latency. To explain the
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Figure 6.1: End-to-end request latencies
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Figure 6.2: Median network latency decomposition

source of performance variability and plateau, we consider a decomposition of the median

and the P99 end-to-end latencies. We show those in Figure 6.2 and Figure 6.3. There, we

observe that the network comprises only a minority of end-to-end latency with compute

responsible for up to 80% of end-to-end request time. We can also see that there is no

improvement going from the obstructed 5G (recorded with a window obstacle as described

in Section 5.2) to LTE. When we consider the P99 latency, however, we can see that the

performance is limited by the network and there is no little correlation between the network

standard and P99 network latency.

We explain this difference by considering the median and the P99 network latency de-

composition. We show those in Figure 6.4 and Figure 6.5. For all, we can see that for both

median and P99 latency, the uplink performance is a limiting factor. The trace resulting in

the best median value latency value is the unobstructed 5G trace - the trace with the high-
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Figure 6.3: P99 network latency decomposition
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Figure 6.4: Median network latency decomposition.
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Figure 6.5: P99 network latency decompositon.

est recorded uplink speed. When considering the P99 latency, however, we observe that no

improvement with selected mobile network standards, indicating that uplink performance

variability remains a challenge for future mobile network standards.

6.4 Different applications

In this section, we discuss the difference in application response latency under image classi-

fication and text translation workloads. The workload, along with their bandwidth uplink

and downlink requirements, are summarized in Section 3.4. We find that the image classi-

fication workload, transmitting uplink a bandwidth-heavy image, results in higher network

latency and network performance variability when compared to the text translation work-

load, transmitting uplink, lower in bandwidth requirements, textual data.
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Figure 6.8: P99 end-to-end latency decomposition

We show the difference in the end-to-end request latency in Figure 6.6. As observed, text

translation has a higher end-to-end latency, but the end-to-end latency itself shows lower

performance variability than observed for the image classification workload. To explain

this, we refer to the end-to-end latency decomposition of the median and P99 request,

which we show in Figure 6.7 and Figure 6.8 respectively. From those, we find that the

difference in median response latency is largely explained by the difference in compute

latency. The difference in the median latency is explained by the difference in compute.

For text translation workload, the server-side compute comprises over 99% of the end-to-
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Figure 6.9: Uplink requirements per application

end latency. For P99; however, the network is responsible for a more significant portion

of the end-to-end latency. It is also evident that the P99 network latency for the text

translation workload is significantly lower than for the image classification workload. This

is explained by the difference in the uplink utilization patterns for the two workloads. We

show the average request size, measured in the number of MTU slots in Figure 6.9. There,

we can see that while all the text translation requests can be transmitted in one MTU slot,

the image classification requests take around 50 MTU slots per uplink request.

6.5 Deployment location

In this section, we discuss the differences resulting from running the workload at different

deployment locations. The information on deployments - edge, EU-Central-1, EU-West-1,

US-Virginia-1 - and the information on their respective core network latencies can be found

in Figure 5.5. We find that while there is a significant effect of core network latency on the

P1 and median request times, the P99, largely dominated by high mobile network jitter,

experiences minimal improvements for different offloading locations.

We show the results for edge, EU-Central-1, EU-West-1, and US-Virginia-1 deployment

in Figure 6.10. For edge, we see that while the median latency stays well below 100 ms,

the distribution has a very long end with a some outliers reaching above 1000 ms. EU-

Central-1, EU-West-1, and US-Virginia-1 latency distribution experiences a shift with an

increase in the core network latency; however, the jitter, largely caused by mobile network

hop, remains significant for all. Upon analysis of the core network latency and experienced

uplink latency, we find that every 1 ms drop in core network, results in a 4 ms drop

in experienced median uplink latency. We show this in Section 6.5, where we find the
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Figure 6.10: Deployment location latencies.

correlation by applying a linear regression with minimal squared error objective on the

collected data. We hypothesize that this suboptimal scaling is a result of limitations posed

by the TCP congestion control protocol, resulting in a suboptimal choice of congestion

window size on high-jitter long links. Validating the results, we analyze the trend in P1

latency, shown in Section 6.5, and find that, as expected, with each 1 ms increase in the

core network latency, the uplink latency increases by around 1 ms. The P99 latency shown

in Section 6.5; however, defined largely by the mobile network performance variability, only

shows a weak correlation between the core network latency and uplink latency.

6.6 Network load

In this section, we identify a number of scalability concerns of the applications deployed

on top of mobile networks. To obtain the results, we run the image classification workload

with 2, 5, and 10 requests per second. For this experiment, we used the default MahiMahi

Verizon 4G mobile network trace. This trace, being recorded in 2016, has lower network

capacity than shown by modern network infrastructure traces collected in Section 5.2. We

use this trace; however, to saturate the mobile network link with the request data without

a compute becoming a bottleneck for the end-to-end request processing. We empirically

validate that this property holds for our experimental setup. The results, however, is a
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Figure 6.11: Core network latency analysis: (top) Median uplink core network latency,
(bottom left) P1 latency, (bottom right) P99 latency.

result of inherent mobile traces performance variability; and, therefore, apply to any high-

jitter networks. Our results indicate the necessity of application-level congestion control

for real-time applications. Our results show that with trace and workload that is ran,

the uplink queue builds up, resulting from low mobile network performance during limited

time periods, can lead to a 200 times increase in uplink latency as a result of congestion

collapse.

We show the obtained uplink latencies for different request frequencies in fig. 6.12. There,

we observe that while the uplink latency tends to stay under 100 ms under the optimal

network conditions. However, during the periods of low uplink performance, in our setup,

the uplink latency increases up to 20 seconds. In Figure 6.13, we show the correlation

between the uplink capacity and the uplink latency when workload is run with 10 re-

quests/second. We observe that whenever the uplink capacity drops below a certain value,

which is around 5 Mbps, the uplink latency increases as well. The longer the period of

network deterioration, the higher the increase in the uplink latency. As we show in Fig-
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Figure 6.12: Uplink latency vs time
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Figure 6.13: Upload latency vs upload speed
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Figure 6.14: Uplink latency vs queue depth

ure 6.14, this is a result of the uplink queue buildup. Whenever the uplink queue increases,

the uplink latency increases as well. Whenever the queue size flattens out, indicating that
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1 if latency > 500 ms:

2 sending_rate = config["frequency"] / 2

3 else:

4 sending_rate = config["frequency"]

Listing 2: Congestion control
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Figure 6.15: Application-level congestion control performance. Median value

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Median uplink latency [s]

1

2

With congestion control
No congestion control

Figure 6.16: Application-level congestion control performance. P99

the queue is full and the link starts to drop packets, the uplink latency increases by up to

200 times. We validate this hypothesis by constructing an application-level congestion

control mechanism that divides the sending rate by 2 whenever the end-to-end latency is

higher than 500 ms. We show the pseudocode for this congestion control mechanism in

Listing 2. Use of this congestion control results in, as shown in Figure 6.15 and Figure 6.16,

a 9 times latency decrease for median end-to-end request latency and a 3.5 time decrease

for the P99 end-to-end latency.

To demonstrate how application developers could handle this performance variability, we

modified the application with a simple application-level congestion control mechanism. We

summarize this congestion control mechanism implemented in Listing 2. This mechanism

checks if the end-to-end latency is above 500 ms and, in case it is, it halves the rate at which

44



6.7 6G Impact

0 250 500 750 1000 1250 1500 1750
End-to-end latency [ms]

6G + 
 compute

6G

5G

10 ms - AV baseline
50 ms - VR baseline

Figure 6.17: 6G Prospected.

data is being sent by halving the number of images that the endpoint sends to the server.

Applications can implement a different way of reducing the application data rate, which

will depend on the semantics of the applications. An example of an alternative technique

is reducing the image resolution instead of reducing the frequency at which those are sent.

In Figure 6.15, we show a comparison of median uplink times, and in Figure 6.16, we

show a comparison of P99 uplink times. There, we can see that implementing this simple

application-level congestion control mechanism can speed up the performance almost 10

times, dropping the median delay from 1 second to 0.12. It, as well, drops the performance

variability almost 4 times, from 20 seconds to 5.5.

6.7 6G Impact

In this section, we analyze how the upcoming 6G standard can make novel low-latency

applications possible. For that, we assume edge deployments with minimal core network

latency, and we assume the 6G has negligible jitter. The 6G performance baselines used are

100 Gbps bandwidth and 0.1 ms latency (26). We calculate network transmission latency

using the formula:

latency(ms) = (
image_size

100 Gbps
) + 0.1 + 0.1

(0.1 is repeated twice to account for both uplink and downlink latencies. We assume that

the response containing only an image class has negligible size). We summarize the results

of end-to-end latency for image classification workload in Figure 6.17. We can observe that,

in our setup, while the transition from 5G to 6G will decrease the end-to-end latency and,
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importantly, will drastically decrease the request performance variability, the improvement

solely to the cellular network are not sufficient to allow for novel applications. The limiting

factor, in this case, becomes the server-side compute. If, however, along with the network,

we improve the compute by a factor of 20 when compared to the compute configuration

used in the setup, the end-to-end latency becomes sufficiently low to allow for novel low-

latency applications. This shows that transitioning to 6G-enabled applications requires

consideration of both compute and network components.
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7

Conclusion

In this paper, we aimed to facilitate an accurate and flexible exploration of digital contin-

uum network and compute infrastructure trade-offs. We achieved this by (i) designing

and implementing a 6G testbed, (ii) designing a method to record the performance of

existing networking setups and using it to construct an open-source cellular network trace

archive, (iii) analyzing the limitations of novel applications with state-of-practice network-

ing infrastructure.

7.1 Answering the Research Questions

(RQ1) How to design a 6G testbed? We approached the design by constructing a set of

requirements essential for an accurate 6G testbed. We used those to construct a design for

a 6G testbed with separate compute and network components. The network simulation,

in particular, is designed by separately simulating, based on the distinct performance

properties, the core and mobile networks.

(RQ2) How to implement a 6G testbed? We implemented the 6G by using the

peer-reviewed Continuum benchmark (10) for compute and state-of-the-art record-replay

MahiMahi (11) for network simulation. Our implementation aims to provide a tool that can

easily be configured by the end user for their particular use case. Following the principles

of open science, and allowing further testbed extension along with existing experimental

results reproduction, we published the testbed as an open-source artifact.

(RQ3) How to characterize the performance of the digital continuum network-

ing? We characterized the network performance by separately collecting the performance

data for core and mobile networks. We first constructed a method that can be used to
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collect the performance of any networking setup, and then we used it to construct an

open-source cellular network trace archive containing the performance traces of real-world

network infrastructure. We finished the section by analyzing the traces and gave several

insights on network system-level performance trends and limitations.

(RQ4) What is the impact of cellular networks on ML applications running

in the digital continuum? Using the 6G testbed and a trace archive, we constructed

several experiments that evaluated the effect of the cellular network on the end-to-end

application performance under different network conditions. These conditions included

cellular network technology, location of offloading, type of data transmitted, and network

load. Based on the results of our experiments, we identified a number of challenges for

the 5G to 6G transition and a number of application-level techniques that can be used for

tackling the limitations of the state-of-practice network infrastructure.

7.2 Threats to Validity

We identify a number of threats to validity (TV):

(TV1) Overestimated network capacity. Current network setup assumes that the

cellular network performance is workload-independent and the same transmission slots

would be available as when recording its performance by continuously transmitting network

packets. Modern research (27); however, shows that the cellular network performance

depends on the workload, which can lead to overestimation of network capacity by tools

like saturatr (11).

(TV2) Insufficient time recording mobile network performance. Due to associated

costs, we record mobile network traces over a short time span up to 120 seconds. Our traces

do not show long-term performance trends and daily load patterns observed on mobile

network infrastructure (28).

(TV3) Insufficient number of providers and geographical locations surveyed. In

this paper, we recorded the traces for only a single cellular network provider - KPN - and

at the same geographical location. We, as well, do not analyze how network performance

changes during the network handoffs, which is relevant when the user is moving rather

than staying static. Meanwhile, the cellular network performance can differ vastly based

on the cellular network operator and the location (29). As well it is known that network

handoffs can deteriorate experienced network performance (30).
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7.3 Future Work

(TV4) Ignored core network bandwidth In the current simulation setup, we assume

that the limiting bandwidth factor is mobile network bandwidth, and the core network

transmission time is sufficiently small to be disregarded when compared to mobile network

transmission time.

(TV5) Ignored core network performance variability. While the core network has

significantly lower jitter, as seen from the collected data, it can still have performance

spikes associated with increased network congestion.

(TV6) CPU-based experiment setup. While our experiment setup executed the AI-

based workloads on CPU, running those workloads using GPU is likely to significantly

decrease the inference time (31).

(TV7) Performance suboptimal AI frameworks used. While PyTorch and Tensor-

flow are state-of-practice frameworks widely used both in production and research, there

exist other state-of-art deep learning frameworks that show lower inference time than ones

shown by PyTorch and Tensorflow (32).

(TV8) Impact of higher network Quality of Service. In this study, we do not control

the quality of service selected by the internet service provider to carry the network traffic

during the network performance data collection. However, the higher network quality of

service reserved for real-time latency-sensitive applications makes internet service providers

to prioritize the traffic, increasing experienced network performance (33).

7.3 Future Work

We identify several future research (FR) trajectories:

(FR1) Implementation of high-speed jitter-aware network simulators. During

the experimentation, we found that the CPU utilization of the default MahiMahi imple-

mentation grows as the bandwidth of the emulated link increases, which makes it unfeasible

to emulate high-bandwidth links.

(FR2) AI inference performance As shown in the evaluation, improvements to the

network make AI inference latency an increasing concern.

(FR3) Large scale cellular network trace archive Current trace archive can be ex-

tended by collecting the performance data of multiple cellular network providers, from mul-

tiple geographic locations. The trace archive would, as well, benefit from capturing traces
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at timestamps with different load levels to capture cellular network performance variabil-

ity associated with the daily usage patterns. Finally, the trace archive would benefit from

capturing the network performance with a non-static endpoint experiencing performance

effects of network handoffs.

(FR4) Tackling the cellular network upload capacity and performance variabil-

ity. In our setup, it was shown that the main network limitation for the studied workloads

is low upload capacity and high cellular network performance variability. Therefore, tack-

ling the limited upload capacity of the cellular network and high performance variability

is essential.

(FR5) Software practices for real-time mobile network-based applications. As

identified in the evaluation, some software practices like application-level congestion control

or a higher degree of input data pre-processing to decrease upload data size can help with

tackling the limitations of cellular networking infrastructure.
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Appendix A

Reproducibility

A.1 Abstract

GitHub repository

A.2 Artifact check-list (meta-information)

Obligatory. Use just a few informal keywords in all fields applicable to your artifacts and

remove the rest. This information is needed to find appropriate reviewers and gradually

unify artifact meta information in Digital Libraries.

• Program: Continuum, MahiMahi

• Compilation: none. Python 3.9 used for interpretation

• Binary: none

• Model: MobileNetV2, MarianMT

• Run-time environment: QEMU

• Hardware: Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz, 256 GB

• Run-time state: clean

• Execution: Python

• Metrics: network, compute latency

• Experiments: network generation, continuum offloading, text and image trans-
mission, scalability under load

• How much disk space required (approximately)?: 5 GB

• How much time is needed to prepare workflow (approximately)?: 0
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A. REPRODUCIBILITY

• How much time is needed to complete experiments (approximately)?: 5 minutes
per experiment

• Publicly available?: Yes

• Code licenses (if publicly available)?: None

• Data licenses (if publicly available)?: None

• Workflow framework used?: Ansible

• Archived (provide DOI)?: No

A.3 Description

How to access

You can access 6G testbed through GitHub. You can access the mobile network perfor-

mance traces through Google Drive.

Software dependencies

LibVirt, Ansible, Kubernetes, Docker

Data sets

Experiments used for last-mile network simulation, network traces available through Google

Drive.

Experimental hardware

A.4 Experiment customization

Experiments can be customized by specifying your mobile network trace, your core network

latency, or by specifying your endpoint and cloud, and edge node Docker containers.

A.5 Notes

The wireless network presets used are:

• lte_nl_kpn_mahimahi for KPN LTE

• 5g_obstacled_nl_kpn_mahimahi for obstacled KPN 5G

• 5g_nl_kpn_mahimahi for unobstacled KPN 5G
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A.5 Notes

• 4g_us_verizon_mahimahi for Verizon 4G

The used offloading location presets are:

• base_edge for base edge

• eu_central_1 for EU-Central-1 located in Paris, France, representing the local

cloud

• eu_west_3 for EU-West-3 located in Paris, France, representing the regional cloud

• us_east_1 for US-East-1 located in Virginia, USA, representing the transcontinen-

tal cloud
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