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Abstract

As digital services grow in size and complexity, many systems adopt containerization

as a lightweight, distributed solution. Kubernetes, one of the most popular container

orchestration platforms, is widely used not only to manage containerized services but

also to implement custom application-specific control logic on top of the Kubernetes

control plane. Systems that embed such custom logic within Kubernetes are referred

to as Kubernetes-integrated systems, where the application behavior depends on both

the deployed containers and the underlying custom orchestrator.

However, testing such systems presents unique challenges. Existing research primar-

ily addresses either Kubernetes-native components or application functionality de-

ployed on Kubernetes, leaving a gap in end-to-end frameworks capable of validating

both custom orchestration logic and core Kubernetes components.

This thesis addresses this gap using JetBrains CodeCanvas, a remote development

platform that orchestrates containerized environments, as a case study. We propose

a methodology for orchestration-aware test framework design and implement it as

an end-to-end testing framework that (i) captures interactions between custom Ku-

bernetes logic and core cluster components, (ii) supports validation across cluster

upgrades to simulate real-world updates, and (iii) integrates with the CI/CD pipeline

for continuous execution. A tailored test suite for CodeCanvas is designed and im-

plemented for three core use cases: (i) component correctness, (ii) data integrity, and

(iii) cross-version component compatibility. A thorough evaluation of the framework

and test suite is performed in production environments, demonstrating that the frame-

work detects critical bugs that would remain undetected without orchestration-aware

testing mechanism.
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1

Introduction

As digital services become more and more central to modern life, the infrastructure that supports

them has expanded significantly in both complexity and scale. From banking and healthcare to

communication and entertainment, more aspects of society rely on dependable, high-performing

software systems. As digital services scale rapidly, containerization has become a fundamental

technology within service infrastructure. Containers package applications and their dependencies

into lightweight, portable units that can run consistently across different computing environments.

Unlike traditional virtual machines (VMs), containers are faster to start, require fewer system

resources, and are easier to manage (1). They allow companies to serve millions of users across

regions while minimizing operational costs and infrastructure management overhead.

However, as systems grow in size and complexity, managing thousands of containers across

clusters of machines becomes increasingly difficult. This has led to the rise of container orches-

tration systems, which helps automate the deployment, scaling, and maintenance of containerized

applications. These tools provide a way to manage containers as a unified system, handling tasks

such as service discovery, load balancing, and fault recovery. By simplifying both initial deploy-

ments and ongoing management of multiple containers as a single unit, orchestration systems have

become a key part of modern software service infrastructure.

Among these systems, Kubernetes (2) has emerged as the most widely adopted solution. It

provides a powerful platform for orchestrating containerized workloads as it manages application

lifecycles across clusters, ensuring that services remain available, responsive, and scalable. Ac-

cording to the Cloud Native Computing Foundation Annual Survey (2024), approximately 93%

of organizations are currently using or evaluating Kubernetes, reflecting its widespread adoption

across industries (3).

Beyond its role as a general orchestration platform, Kubernetes offers a programmable control

plane that enables applications to integrate directly with its services through its API. Large-scale
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1. INTRODUCTION

systems such as JupyterHub and OpenShift, which are deployed on top of Kubernetes, often ex-

tend Kubernetes with custom controller components or resources, allowing application-specific

orchestration logic to run alongside the native Kubernetes scheduling and lifecycle management

mechanisms. Such Kubernetes-integrated systems leverage Kubernetes not just as a hosting en-

vironment but as an integral part of their functionality, coordinating components and system states

through Kubernetes-native events and workflows. JetBrains CodeCanvas, a remote development

environment orchestrator system studied in this thesis, exemplifies this category by embedding its

orchestration logic directly within the Kubernetes control plane to manage development environ-

ments at scale.

1.1 Context

Given its central role in modern infrastructure, the correctness and reliability of Kubernetes di-

rectly influence the stability of the systems built on top of it. Failures in orchestration logic can

lead to service disruptions, security vulnerabilities, and broader system failures. This makes thor-

ough testing not only essential for Kubernetes itself but also for Kubernetes-integrated systems,

where Kubernetes is embedded as a critical operational layer to ensure workload availability, per-

formance, and fault tolerance.

Testing Kubernetes itself presents unique challenges. Traditional testing methodologies often

fall short in capturing the complexity of Kubernetes due to its dynamic and distributed nature.

Containers can be created, terminated, rescheduled, or moved across nodes in real-time, making

it difficult to maintain consistent testing conditions or predict system behavior under all possible

scenarios (4, 5).

Moreover, the complexity increases further when testing Kubernetes-integrated systems. Test-

ing these systems involves not just application logic but also configuration, orchestration behavior,

networking, and resource management. Testing for scalability and resource management requires

specialized techniques that account for dynamic resource allocation (6). Security testing is simi-

larly challenging due to the risks of container and network isolation (7, 8). Additionally, failure

modes are varied, with failures and partial outages that traditional tests might overlook (9, 10).

To address these pain points and challenges, there has been active and continuing research

in Kubernetes-related testing, including functional testing techniques for validating application

or native Kubernetes orchestration logic (11, 12), fault injection and tolerance frameworks to

assess system resilience (13, 14), performance benchmarking of Kubernetes under varying load

conditions (15, 16), and tools for security validation across the container orchestration lifecycle

(17, 18, 19, 20).
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1.2 Problem Statement

However, many of these approaches remain narrowly focused. They often focus on isolated

aspects and assume idealized environments, such as testing either single Kubernetes components

or application-level behavior only. This leaves a critical gap for end-to-end testing that evaluates

the entire system under realistic conditions, including both the Kubernetes layer and the applica-

tion layer. Such testing is essential for Kubernetes-integrated systems, where native Kubernetes

orchestration logic, custom Kubernetes controls, and application-level functionality must work to-

gether reliably. As a large-scale application with deep integration with Kubernetes, CodeCanvas

serves as a great use case for researching methodologies and frameworks for testing large-scale

systems that are not only deployed in Kubernetes but also implement application-specific orches-

tration logic with custom Kubernetes components.

1.2 Problem Statement

For Kubernetes-integrated systems like CodeCanvas, their deep coupling with Kubernetes intro-

duces a range of testing challenges that go beyond the scope of existing methodologies. There cur-

rently exists no systematic methodology or automated end-to-end framework for testing systems

that are simultaneously applications built on Kubernetes and infrastructure tools deeply integrated

with its control plane.

Testing such systems demands orchestration-aware testing strategies that can validate not only

application behavior but also underlying Kubernetes components under real-world deployment

conditions at the end-to-end level. In the context of a large-scale system like CodeCanvas, which

is undergoing rapid development and for which new versions are continuously deployed, testing

challenges become especially critical. One common scenario is data loss following a version up-

date, where user workspaces or critical system metadata fail to persist across Kubernetes clusters

or application upgrades. Another is component version incompatibility, where certain application

or Kubernetes components are incompatible with existing dependencies after an update deploy-

ment, triggering failures across the system.

This thesis addresses the specific and timely problem of designing an orchestration-aware

testing framework as well as a testing suite tailored to CodeCanvas, with the broader goal

of establishing reproducible, automated, and comprehensive testing practices for a new class of

infrastructure-integrated development platforms that operate natively within Kubernetes ecosys-

tems.
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1. INTRODUCTION

1.3 Research Questions

Based on the problem statement, the main research question will be broken down to 3 research

questions as follows:

• RQ1: How can we design a continuous testing framework for Kubernetes-integrated

systems?

Existing testing frameworks do not sufficiently address the need to verify both application

correctness and the behavior of Kubernetes components manipulated by the application.

Furthermore, for systems that are developed in an agile environment with continuous de-

livery, it is essential to maintain ongoing validation of correctness and compatibility after

each update, while ensuring the flexibility and maintainability of the test infrastructure. In

particular, for CodeCanvas, this research question focuses on designing a testing framework

capable of validating critical application components, their interaction with Kubernetes, and

the correctness of Kubernetes cluster configurations and updates.

• RQ2: How can a effective test suite be constructed for Kubernetes-integrated systems?

A key aspect of effective testing is the identification of appropriate test subjects and the

definition of their corresponding testing objectives. This research question aims to establish

a systematic approach to selecting test subjects and designing relevant test scenarios.

– RQ2.1: Which components of a Kubernetes-integrated system must be tested?

This sub-question focuses on identifying the core application modules and the Kuber-

netes control plane components that are critical to system functionality. For Code-

Canvas, particular emphasis is placed on the components responsible for environment

provisioning, orchestration, and state management.

– RQ2.2: What are the expected behaviors and outcomes for different Kubernetes-

based system components under various conditions?

This sub-question aims to define the expected operational behaviors, failure tolerances,

and recovery mechanisms for the components identified in RQ2.1, under realistic or-

chestration events such as cluster upgrades and resource contention.

• RQ3: How can the effectiveness of the designed testing framework and test suite be

evaluated?

This research question addresses the development of evaluation criteria and metrics to as-

sess the framework’s effectiveness in terms of coverage, fault detection, reproducibility, and
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1.4 Research Methodology

integration with continuous delivery pipelines. Within the context of CodeCanvas, the eval-

uation is to ensure that the framework and the test suite can effectively verify the system’s

correctness across a range of real-world deployment scenarios and operational disruptions.

1.4 Research Methodology

This thesis utilizes a combination of design-based, use case-driven, and experimental research

methods in order to systematically address the research questions:

• M1: Design, abstraction, prototyping.

To answer RQ1, a continuous, orchestration-aware testing framework will be designed

based on the functional and non-functional requirements of Kubernetes-integrated systems,

with CodeCanvas serving as the primary reference system. The framework will be ab-

stracted into a high-level model to generalize beyond a single application while ensuring

applicability in continuous delivery contexts. A prototype implementation on CodeCanvas

will be developed to validate the design decisions.

• M2: Quantitative research.

To support RQ2, a systematic analysis will be conducted of the functionalities and inter-

actions within Kubernetes and CodeCanvas. This includes surveying system responsibili-

ties, identifying critical components, and formulating corresponding testing objectives. This

structured analysis informs the design of a comprehensive and targeted test suite.

• M3: Use-case study.

A detailed use-case study of CodeCanvas will be performed in this thesis. To answer RQ2.1,

a detailed system study of CodeCanvas will be conducted. This will involve analyzing

architectural documentation, reviewing operational traces, and collaborating with domain

experts when available. To answer RQ2.2, operational scenarios and failure conditions will

be systematically derived from CodeCanvas’ expected behaviors.

• M4: Experimental research, quantitative evaluation.

To answer RQ3, the designed testing framework and test suite will be deployed and eval-

uated against CodeCanvas under diverse real-world operational conditions. Effectiveness

will be measured using quantitative metrics including test coverage and fault detection rate.
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1. INTRODUCTION

1.5 Thesis Contributions

This thesis makes the following contributions:

• C1 (Conceptual): Design and implementation of a continuous, orchestration-aware

testing framework for Kubernetes-integrated systems.

A testing framework is proposed that specifically targets systems operating both as appli-

cations on Kubernetes and as infrastructure tools integrated with Kubernetes control-plane

operations. The framework addresses gaps in existing testing methodologies by incorporat-

ing real-world orchestration dynamics and continuous integration/deployment requirements.

(RQ1)

• C2 (Conceptual): A methodology in end-to-end testing framework and suite design for

Kubernetes-integrated systems.

A structured model is developed that identifies and categorizes the essential system and

Kubernetes components that must be tested to ensure system correctness, based on a detailed

case study of CodeCanvas. (RQ2.1)

• C3 (Conceptual): Design and implementation of a systematic test suite for Kubernetes-

integrated systems.

A comprehensive test suite is designed to define expected behaviors, failure conditions, and

validation objectives for each critical component identified. The suite is built to cover a

range of realistic orchestration events and simulation of real-word cluster updates, ensuring

meaningful verification of complex Kubernetes-based systems. (RQ2)

• C4 (Experimental): Quantitative evaluation of the testing framework and test suite.

The effectiveness of the designs is evaluated using key metrics such as test coverage, fault

detection, reproducibility, and performance overhead in CI/CD pipelines. (RQ3)

1.6 Plagiarism Declaration

I confirm that this thesis work is my own work, is not copied from any other source (person,

Internet, or machine), and has not been submitted elsewhere for assessment.

1.7 Thesis Structure

This thesis is structured as follows: Chapter 2 introduces related background information, includ-

ing the Kubernetes and CodeCanvas structures. Chapter 3 and Chapter 4 demonstrate the design
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1.7 Thesis Structure

methodologies and results of the testing framework (RQ1) and the test suite (RQ2) for Code-

Canvas. Chapter 5 illustrates the implementation of the designs. Chapter 6 answers RQ3 by

illustrating an evaluation experiment on the framework and suite implementation, including the

experiment setup and results for different use case scenarios. Chapter 7 covers the current state of

research on various topics related to our research questions. Chapter 8 concludes the thesis with

answers to the research questions and suggestions for future work.
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2

Background

2.1 Kubernetes

Kubernetes is an open-source container orchestration platform designed to automate the deploy-

ment, scaling, and management of containerized applications. Maintained by the Cloud Native

Computing Foundation (CNCF), Kubernetes has become a foundational technology for modern

distributed systems. Understanding its core architecture is essential for identifying the testing

objectives of Kubernetes-integrated systems. This section introduces the key architectural compo-

nents of Kubernetes relevant to the context of systems integrated with Kubernetes logic.

kubelet

User ContainerPods

Worker Node

Kubernetes API Server

controller

scheduleretcd

custom operator

Control Plane

kubelet

User ContainerPods

Worker Node

Figure 2.1: Architecture of Kubernetes

A Kubernetes cluster is composed of a control plane and one or more worker nodes. The con-

trol plane is responsible for maintaining the desired state of the system, while worker nodes are

responsible for running the actual application workloads.
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2. BACKGROUND

The worker node is the primary execution environment for user workloads. Each node runs

containers in the pods at runtime. Meanwhile, kubelet is responsible for communicating with the

control plane.

The control plane components govern cluster-wide decisions and maintain the cluster state. The

Kubernetes API server is the central access point for all operations within the cluster. It exposes

a RESTful interface through which components interact with the Kubernetes system. Etcd is a

distributed key-value store that serves as the persistent backing storage for all cluster states. The

scheduler assigns unscheduled pods to the appropriate worker nodes. The controller continuously

monitors the cluster state and attempts to transition it to the desired state.

One of the defining features of Kubernetes is its declarative control model, which enables ex-

tensibility through custom logic embedded in the control plane without modifying the code of

Kubernetes itself. A custom operator is a higher-level controller built using custom resources

to manage applications and components in Kubernetes. It automates complex operational tasks,

such as installation, configuration, and scaling, by interacting with the Kubernetes API server.

Many Kubernetes-integrated systems, including OpenShift and JupyterHub, use custom operators

to implement application-specific orchestration logic.

2.2 JetBrains CodeCanvas

Remote Storage  

Block
StorageDatabase

IDE connection
Gateway

SSHSSH Client

UI Interface
(Browser)

 Dev Environment Cluster

SSH Worker Instances

request/data
create

warmup

Kubernetes Operator

create/remove pods

Kubernetes API

 CodeCanvas Application Cluster

CodeCanvas Application

Relay Server

Jump Server

PV

mount

PVC

Object
Storage

CSI Driver

Volume
Snapshot

metadata

logs

create

WebSocket

Figure 2.2: Architecture of CodeCanvas
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2.2 JetBrains CodeCanvas

CodeCanvas is a cloud-based development environment platform developed by JetBrains. It

functions as a remote development orchestrator by provisioning and managing containerized de-

velopment environments in the cloud, thereby minimizing infrastructure overhead and reducing

the time required for configuring local environments.

The setup process begins with the definition of an environment configuration template, which

specifies parameters such as source code repositories, integrated development environment (IDE)

versions, and other tooling dependencies. From a single template, multiple isolated development

environments can be created. These environments connect to a user’s local IDE interface, while all

computation and data storage remain within the cloud-hosted CodeCanvas infrastructure. More-

over, users may generate a warm-up snapshot from a template. The snapshot will preload depen-

dencies and project metadata, accelerating the provisioning of new development environments.

Figure 2.2 illustrates the underlying architecture of CodeCanvas. CodeCanvas consists of sev-

eral Kubernetes clusters, one CodeCanvas application cluster, and one to multiple Development

environment clusters. CodeCanvas application cluster hosts the CodeCanvas Application, the

main back-end service component, as well as the Relay Server and Jump Server. The development

environment cluster is responsible for hosting development environment workers and integrating

deeply with the Kubernetes architecture.

CodeCanvas Application. This component serves as a user-facing web service that provides

the interface for managing development environments through browsers. It also connects to a

Kubernetes Operator using the compute API, provisioning resources indirectly.

Relay Server and Jump Server. These two intermediary components serve as a secure connec-

tion between the user machine and the development environment instances. Relay Server provides

WebSocket connections between IDE services on the user machine and the development envi-

ronments. Similarly, Jump Server forwards SSH connections between the SSH client and the

development environments.

Kubernetes Operator. This component is a customized Kubernetes controller that embeds the

domain-specific logic of CodeCanvas to deploy, configure, and manage the lifecycle of worker

instances by manipulating the native Kubernetes RESTful API.

Worker Instances. A worker is a Kubernetes-managed, specialized runtime agent responsible

for controlling the lifecycle of development environments and warm-up tasks. Each development

environment is deployed as a Kubernetes Pod that contains a single worker container. Each worker

11



2. BACKGROUND

instance is implemented as a container running inside a Kubernetes pod and orchestrates environ-

ment bootstrapping, runtime coordination, and state reporting.

External Storage. The external storage, including the database, object storage, and block stor-

age, is stored outside the clusters for persistent data. CodeCanvas Application invokes the

database, which stores the application’s state, development environment states, user data, service

accounts, personal secrets, and other metadata. The object storage is responsible for providing

development environment logs and audit log data for the CodeCanvas Application. The block

storage stores persistent volumes of user data and code for development environments.

12



3

Design of the Testing Framework

In this section, to address RQ1: How can we design a continuous testing framework for Kubernetes-

integrated systems, we conduct a requirements analysis, including the analysis of the CodeCanvas

workflow integrating with Kubernetes (Section 3.1), and the identification of functional (Section

3.2.1) and non-functional (Section 3.2.2) requirements of the testing framework. Then, we intro-

duce the framework architecture by presenting an overview of the workflow and the responsibili-

ties of each framework component, while emphasizing the orchestration-aware mechanism of the

framework (Section 3.3).

3.1 System Workflow Analysis

CodeCanvas is a cloud-based remote development solution that orchestrates containerized devel-

opment environments. Users can create environments from predefined repository and IDE config-

uration templates or speed up environment creation through pre-configured warm-up snapshots.

As a Kubernetes-integrated system, CodeCanvas not only deploys within a Kubernetes cluster

but also interfaces directly with native Kubernetes APIs and storage mechanisms to implement

custom orchestration logic. At the core of this functionality is a customized Kubernetes opera-

tor, which is a Kubernetes extension mechanism that enables the definition of customized control

logic. This operator processes requests from CodeCanvas application components and coordinates

corresponding state changes within the Kubernetes cluster.

Therefore, designing an end-to-end testing framework for CodeCanvas requires a comprehen-

sive understanding of the interactions between three layers: the application components, the cus-

tom Kubernetes operator, and the native Kubernetes subsystems. A detailed system workflow

analysis enables the identification of critical integration points and interaction patterns across

13
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Block
Storage

Dev Environment Cluster

operator API

Kubernetes
Operator

Kubernetes API

PV

mount

PVC

CSI Driver

create

Worker

User ContainerUser Containers

Pod

provision

CodeCanvas
Application

environment creation request

invoke

Scheduler

(a) Development environment creation

Block
Storage

Dev Environment Cluster

operator API

Kubernetes
Operator

Kubernetes API

mount

PVC

CSI Driver

Worker

User ContainerUser Containers

Pod

provision

CodeCanvas
Application

warm-up snapshot creation request

invoke create
Volume

Snapshot

(b) Warm-up snapshot creation

Figure 3.1: CodeCanvas application main workflows

these layers. This analysis forms the basis for defining both functional and non-functional test-

ing requirements and provides architectural guidance for building a testing framework capable of

validating the system in realistic operational conditions.

Two main workflows of CodeCanvas are analyzed in the following sections, covering the de-

velopment environment initialization process and the storage management of CodeCanvas using

Kubernetes components.

Development Environment Lifecycle. A development environment is a containerized workspace

for end users, including code repositories, IDE backend, and required development tools. As

shown in Figure 3.1a, each development environment is deployed as a Kubernetes Pod that con-

tains a single worker container and nested user containers. When a development environment

creation request is made to the CodeCanvas Application, it forwards the request and configu-

ration data to the Kubernetes Operator. Then the Kubernetes Operator creates the respective

task, enqueues the task, and delegates it to the Kubernetes scheduler by deploying a new pod. If

sufficient cluster resources are available, the pod is scheduled and initialized. Otherwise, the task

remains in a pending state until resources are freed or additional compute capacity is provisioned.

Once the new pod is created, it then initializes the development environment by orchestrating the

creation of nested containers, including the worker container and multiple user containers host-

ing user data and microservices. Once the development environment is terminated by the user

14



3.1 System Workflow Analysis

or the platform, the worker shuts down all nested containers and exits. The Kubernetes Pod is

then deleted by the Kubernetes Operator, ensuring the complete statelessness of the pod while

maintaining stateful storage via the retained volume.

Apart from managing and monitoring user container lifecycles, the worker is also responsi-

ble for managing the persistent storage associated with each development environment. Prior to

launching the development environment pod, the Kubernetes Operator provisions a Persistent

Volume Claim (PVC), which is dynamically bound to a Persistent Volume (PV) in external Block

Storage through the Container Storage Interface (CSI) driver in Kubernetes. This volume is then

mounted into the development environment pod and used to persist user data, such as source code,

configurations, and environment state. When a development environment is stopped, the volume is

safely unmounted and preserved. It is later reattached if the environment is restarted, thus ensuring

data persistence across sessions.

Warm-up Snapshots. To optimize the startup latency of development environments, Code-

Canvas employs a warm-up mechanism that leverages Kubernetes-native storage abstractions in

conjunction with the CSI snapshot functionality. The warm-up process is designed to pre-execute

environment initialization tasks and persist the resulting system state as a reusable snapshot. This

snapshot serves as a baseline image from which future development environments can be instanti-

ated rapidly and with minimal overhead.

As shown in Figure 3.1b, a warm-up task is conceptually similar to a standard development

environment deployment, which is encapsulated within a Kubernetes Pod running a worker con-

tainer and nested user containers. During warm-up execution, the worker performs all predefined

bootstrapping tasks and writes the resulting environment state to an associated PV, dynamically

provisioned via a PVC. Upon successful completion of the warm-up task, the CSI Driver cre-

ates a Volume Snapshot object. This object references a specific PVC and serves as a metadata

descriptor for a point-in-time snapshot of the volume. The snapshot is then stored in the block

storage.

When a user requests the creation of a new environment, the Kubernetes Operator specifies a

field in the PVC that references the existing Volume Snapshot. The CSI driver then provisions a

new volume initialized with the snapshot’s contents, thereby bypassing time-intensive setup steps.

Results. In the context of testing orchestration-aware Kubernetes-based systems, the workflows

of CodeCanvas provide insights on design requirements and architectural design decisions of the

testing framework:
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• Insight 1: Interactions between the application and Kubernetes control plane. The

tight coupling of the application and Kubernetes means that any system change must be

evaluated in terms of both application logic and its Kubernetes orchestration behavior.

• Insight 2: Versioned state artifacts. The snapshot-based warm-up feature introduces ver-

sioned state artifacts that may persist across multiple releases, thus posing a challenge in

ensuring compatibility between new application logic and old data artifacts.

3.2 Requirements Analysis

With the goal of building an end-to-end testing framework for Kubernetes-integrated systems,

we analyze the CodeCanvas use case, and based on the insights, derive its functional and non-

functional design requirements.

3.2.1 Functional Requirements

The functional requirements (FRs) define the expected crucial behaviors and functions that the

testing framework should have.

• FR1: Multi-layer coverage. CodeCanvas is an orchestrator that manipulates Kubernetes-

native resources via a customized operator. Therefore, the testing framework must account

for both layers simultaneously, validating not only application correctness but also correct-

ness in orchestration patterns and cluster-state transitions. (Insight1)

• FR2: Cluster lifecycle management. The framework must support provisioning, snapshot-

ting, and restoring Kubernetes clusters with specific versions of the target system in order

to test versioned state artifacts and system compatibility after applying system updates.

• FR3: Test data injection and state preparation. The framework must enable creation

and injection of realistic test data, such as development environments, user accesses, cloud

policies and warm-up snapshots, so that it can validate the integrity of data artifacts after the

simulated system update.

• FR4: Custom test case execution. The framework must support running customized test

cases, including functional tests, integration tests, and regression tests. Since the testing

scenarios of CodeCanvas vary across system configurations, supporting a wide spectrum of

custom test logic ensures the framework adapts to evolving requirements and different use

cases.
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• FR5: Result validation and reporting. The framework must provide mechanisms for

validating data integrity, system responsiveness and correctness, and Kubernetes resource

stability. Meanwhile it must provide readable test execution reports for test framework

users so that orchestration or application failures can be quickly diagnosed without intensive

manual log analysis.

• FR6: Integration with CI/CD pipelines. The framework must be invocable on CI plat-

forms as CodeCanvas is a system with rapid iteration cycles. Meanwhile, a framework

developed in the context of CI/CD has generalization for large Kubernetes-based systems

with frequent updates similar to CodeCanvas.

3.2.2 Non-Functional Requirements

The non-functional requirements (NFRs) define the quality attributes of the testing framework.

• NFR1: Scalability. The framework must handle scaling to test large clusters or simulate

many parallel development environments, as CodeCanvas deployments may involve parallel

setups or a high number of concurrent sessions in production.

• NFR2: Fault isolation. Test runs must be isolated and recoverable from partial failures.

Failures in one test run must not affect other test runs. This prevents false positives and

ensures that one faulty scenario does not compromise unrelated results.

• NFR3: Extensibility. It must be easy to extend the framework with new types of test scenar-

ios and test cases, additional Kubernetes events, and new validation modules or assertions

since CodeCanvas and Kubernetes are constantly evolving.

• NFR4: Security and access control. The framework should respect access boundaries

and security permissions. It must protect sensitive user data and prevent the exposure of

infrastructure-level vulnerabilities.

3.3 Framework Architecture

Using the design methodology for frameworks proposed by Wieringa et al. (21), we trans-

late the functional and non-functional requirements into the proposed testing framework, which

is designed to support the continuous integration and compatibility verification of Kubernetes-

integrated systems such as CodeCanvas. It is structured into five core components, addressing the

functional and non-functional requirements. The main components include the test controller,
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Figure 3.2: Mapping between testing framework components and test workflow

cluster manager, test data injector, validation suite, and result reporter. This section presents

an architectural overview of the framework, including its layered design, component responsi-

bilities, high-level workflow, and the assumptions about the underlying system behavior and test

environment. In particular, we highlight how the framework achieves orchestration awareness by

interacting with both application-level and Kubernetes-native components.

3.3.1 Design Overview

Existing Kubernetes testing tools often focus on unit tests at the pod or deployment level [cite].

In CodeCanvas, meaningful correctness guarantees depend on interactions between components

across cluster boundaries, such as the coordination between the Kubernetes Operator, worker con-

tainers, and CSI-managed storage. Therefore, we present a testing framework for CodeCanvas

that validates cross-cluster correctness, as shown in Figure 3.2.

The components of the testing framework are divided into three layers of functionality: control

plane (test controller, cluster manager), test execution layer (test data injector, validation

suite), and test result layer (result reporter). The control plane is responsible for the test life

cycle, controlling the test environment, and coordination of the test execution and result report

layer. The test execution layer provides the test data preparation and validation by interacting with

the CodeCanvas application and Kubernetes native components (FR1). The test result is gathered,

processed, and reported by the test result layer. The detailed responsibility of each core component

is as follows:
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• Test Controller. The test controller is the central orchestrator of the testing framework. It is

responsible for orchestrating the full life cycle of test execution, including test setup, cluster

upgrade, data validation, and test result reporting. It interfaces directly with the CI/CD

pipeline (FR6), ensuring automated triggering and integration of the testing process.

• Cluster Manager. The cluster manager is responsible for provisioning, updating, and tear-

ing down Kubernetes clusters used in testing, including both CodeCanvas application clus-

ters and development environment clusters. It also handles version control of the candidate

CodeCanvas application according to FR2, as well as infrastructure deployment, such as

Kubernetes operator, jump server, and relay server.

• Test Data Injector. The test data injector is responsible for the preparation of test data, in-

cluding development environments, user data, stateful volumes, and snapshots, implement-

ing FR3. It supports the creation of custom test data aligned with specific validation objec-

tives, ensuring stateful workloads are accurately simulated and testable across upgrades.

• Validation Suite. The validation suite encapsulates the test oracles and executes system-

level and component-level test cases. It interacts with the CodeCanvas application and

Kubernetes-native components to verify system behavior under various operational scenar-

ios, thereby addressing FR4.

• Result Reporter. The result reporter collects runtime logs, system metrics, and validation

outcomes from the Validation Suite. It generates user-readable reports and artifacts that

are compatible with CI tooling, satisfying FR5. This ensures test feedback is easily inter-

pretable and traceable within development workflows.

The overall workflow of the testing framework begins with the configuration and triggering

phase, where the test controller receives the definition of test inputs and associated validation

logic. Once triggered, the controller invokes the cluster manager to determine a reference bench-

mark version of the system and provision the corresponding Kubernetes clusters, which include

both the CodeCanvas application and development environment clusters. After the benchmark

clusters are initialized, the test controller activates the test data injector to populate the system

with predefined stateful workloads, such as development environments, persistent volumes, and

warm-up snapshots. Upon successful data injection, the cluster manager proceeds to perform a

system upgrade, deploying the candidate version of the application under test to simulate an actual

version rollout scenario, updating all the CodeCanvas-related components (CodeCanvas Appli-

cation, Relay Server, Jump Server, and Kubernetes Opeator). The validation suite is then
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Figure 3.3: Orchestration-awareness mechanism of the testing framework

executed to run test cases that evaluate application-level correctness and Kubernetes-level integra-

tion. Finally, the result reporter collects runtime logs, system metrics, and validation outcomes,

generating structured reports and artifacts. This end-to-end workflow ensures the correctness of

system functionality, user data integrity, and orchestration features while maintaining alignment

with continuous integration and delivery pipelines.

3.3.2 Orchestration-Aware Mechanism

As mentioned in [background], the test framework is designed to run across two main Kubernetes

clusters: the application cluster, which hosts core platform services, and the development environ-

ment cluster, which manages user-facing containers and persistent workloads. A core feature of the

framework is its orchestration-aware capabilities. It interacts not only with application-level inter-

faces, but also with Kubernetes-native components that underpin system behavior. This subsection

outlines how the framework utilizes orchestration awareness through three key components.

• Test Data Injector. The test data injector prepares the system for validation by automat-

ing both user-facing and internal interactions. It populates the system state by emulating

browser-based interactions with the CodeCanvas UI and invoking backend service APIs

directly. For user data initialization, the injector communicates with the CodeCanvas Ap-

plication, which in turn persists the data to the backing database. To set up development
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environments and warm-up snapshots, the injector triggers environment creation via the ap-

plication APIs; the CodeCanvas Application then forwards these operations to the Kuber-

netes Operator, which provisions the corresponding pods and attaches persistent volumes

via native Kubernetes mechanisms.

• Validation Suite. The validation suite is responsible for executing end-to-end integration

and regression tests across both layers of the system. It validates system correctness by

invoking APIs on the CodeCanvas Application and establishing connections to the run-

time worker instances via the Relay Server and Jump Server. These interactions allow

the framework to verify key orchestration properties, including the integrity of develop-

ment environment bootstrapping, the correct functioning of the Kubernetes Operator, and

the persistence and consistency of user data stored in external volumes across deployment

updates.

• Cluster Manager. The cluster manager connects the two main Kubernetes clusters in a

control-plane level. It plays a critical role in enabling orchestration-aware testing by man-

aging the lifecycle and configuration of Kubernetes clusters involved in test execution. It

provisions both the CodeCanvas application cluster and the development environment

cluster, ensuring that each test scenario is executed in a controlled and reproducible infras-

tructure context.

Together, these components ensure that the testing framework can validate not only the applica-

tion logic but also the complex interactions between user workloads and Kubernetes orchestration,

which are central to the reliability of infrastructure-integrated platforms like CodeCanvas.
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4

Design of the Test Suite

This section addresses RQ2: How can a comprehensive test suite be constructed for Kubernetes-

integrated systems by answering RQ2.1 and RQ2.2, identifying core components to be tested and

defining the expected outcomes and assertions of each component.

To systematically construct the test suite for CodeCanvas, we adopt three-step design method-

ology that begins with a structural and behavioral analysis of the system under test (Section

4.1). Based on this analysis, we define a set of validation goals that specify the key functional-

ities, interactions, and guarantees that must be verified (Section 4.2). We then introduce a set of

design principles that guide how validation goals should be instantiated (Section 4.3). Finally, we

translate these goals and principles into a concrete test suite architecture, including a generic test

case model and a set of representative test scenarios that ensure comprehensive and maintainable

validation coverage for CodeCanvas.

4.1 Component Analysis

To answer RQ2.1: Which components of a Kubernetes-integrated system must be tested, this sec-

tion presents a comprehensive analysis of CodeCanvas components and their interactions with

native Kubernetes, in order to identify each component’s responsibilities, its failure modes, and

the corresponding testing strategies necessary to ensure system correctness and robustness, thus

informing the design of the test suite.

CodeCanvas Application. The CodeCanvas Application acts as the user-facing backend server

that handles API requests related to development environment creation, warm-ups, storage man-

agement, and project configurations. It handles user administration and stores user-related meta-

data into the database. It also coordinates with the Kubernetes Operator and manages configu-

23



4. DESIGN OF THE TEST SUITE

Block
StorageDatabase

IDE connection
IDE Client

SSHSSH Client

UI Interface
(Browser)

 Dev Environment Cluster

SSH

operator API
create

warmup

Kubernetes Operator

Service Account

Kubernetes API

 CodeCanvas Application Cluster

Relay Server

Jump Server

PV

mount

PVC

Object
Storage logs

metadata

CSI Driver

create

Volume
Snapshot

Remote Storage  

WebSocket

Worker

User ContainerUser Containers

Pod

Cloud Policy

provision

User 
Administration

 CodeCanvas
 Application

Figure 4.1: Core components of CodeCanvas

ration metadata and state via database and object storage. As the entry point for most operations,

the CodeCanvas Application is critical to both functional correctness and cross-component co-

ordination. Failures in this component can include backward-incompatible API changes, data

persistence failures, or miscommunication with dependent components such as the Kubernetes

Operator. The test suite must therefore validate API contract stability, enforce data integrity

through end-to-end assertions, and ensure compatibility across releases.

Kubernetes Operator. The Kubernetes Operator is responsible for translating abstract envi-

ronment requests into Kubernetes-native resources such as pods, PVCs, and VolumeSnapshots.

It carries orchestration logic, managing complex lifecycle events including warm-up executions,

nested container initialization, and storage provisioning. Errors in the operator can include re-

quest processing errors, inconsistent resource states, failed pod scheduling, unbound volumes, or

invalid snapshot creation. The test suite must validate not only the final system outcomes but also

intermediate transitions such as PVC binding, pod readiness, and CSI snapshot lifecycle.

Relay Server and Jump Server. The servers act as a network intermediary, forwarding termi-

nal traffic between clients on user machines and remote development environments by managing
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WebSocket and SSH connections. Failures in servers include broken or unauthenticated connec-

tions, version incompatibilities with upstream components, or relay misconfigurations. Therefore,

the test suite should include runtime connectivity validation and testing across server versions to

detect protocol or handshake mismatches.

Worker. Implemented using Kubernetes service accounts, cloud polices allow users to set up

automatic authentication of development environment pods in cloud services. Within each devel-

opment environment pod, the Worker is responsible for launching nested user containers, manag-

ing mounted volumes, and monitoring runtime execution. It operates under pod environments and

must remain tightly coupled with the Kubernetes storage and scheduling subsystems. Failures at

this level may involve improper volume mounting, incorrect container sequencing, bootstrapping

errors, or resource exhaustion. The test suite should verify correct initialization and teardown be-

havior, validate the success of warm-up routines, and ensure data consistency across environment

resume operations.

Persistent Storage. CodeCanvas also relies on Kubernetes-native persistent storage, primarily

implemented through dynamically provisioned PVCs and Kubernetes internal CSI Driver orches-

trated by the Kubernetes Operator. Potential failures of storage provisioning can include snap-

shot corruption, PVC rebinding failures during upgrades, or misaligned CSI configurations. The

test suite must validate volume lifecycle operations, including snapshot creation and restoration,

and data integrity across cluster upgrades.

4.2 Validation Goals

Understanding the functional responsibilities and possible failure modes of each core component

within CodeCanvas provides insights into identifying what must be tested to ensure system cor-

rectness, robustness, and cross-version compatibility. A set of validation goals that the test suite

must address across different scenarios is defined based on the component analysis.

Each validation goal (VG) targets a critical system behavior or component interaction that must

be preserved.

• VG1: Development environment lifecycle correctness. CodeCanvas provisions develop-

ment environments as orchestrated Kubernetes Pods that integrate worker and nested user

containers. The test suite must validate the full lifecycle of pod provisioning, initialization,
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runtime behavior, and teardown. This includes verifying coordination between the Code-

Canvas application, the Kubernetes Operator, and native Kubernetes mechanisms to ensure

environments are correctly managed in response to platform triggers.

• VG2: Warm-up snapshot validity. Warm-up snapshots serve as reusable, pre-initialized

system states that reduce development environment startup latency. To preserve their effec-

tiveness, the test suite must validate that snapshots are generated correctly, capture meaning-

ful system state, and can be reliably restored. This includes checking the snapshot creation

pipeline via the Kubernetes CSI interface and the integrity of the corresponding PVs.

• VG3: Persistent data integrity across versions. CodeCanvas stores user data, environ-

ment metadata, and snapshots in externally provisioned storage volumes. The test suite

must ensure that the data remains consistent and accessible across environment restarts and

system version upgrades. In particular, tests must verify PVC-to-PV binding correctness,

snapshot restorability, and data integrity following cluster updates.

• VG4: Cross-version compatibility of core components. Since CodeCanvas follows a

continuous integration model, the test suite must validate that newer cluster versions remain

interoperable with older infrastructure deployments and vice versa. This includes ensuring

that existing clusters with legacy servers can function with updated backend logic, and that

new features do not disrupt compatibility with persistent state or native Kubernetes APIs.

4.3 Design Principle

The design of the test suite is informed by the structural and behavioral characteristics of Code-

Canvas as a Kubernetes-based system. The suite is constructed to ensure functional correctness,

data persistence, and backward compatibility during continuous integration and frequent system

upgrades. The following design principles (DP) reflect the rationale behind the structure and con-

tent of the test suite, and how they align with CodeCanvas-specific constraints.

• DP1: Declarative and modular test definitions. To support maintainability and extensibil-

ity, all test scenarios and test cases are defined declaratively using structured test manifests.

It enables complex validation specification without embedding low-level application or Ku-

bernetes native logic. Moreover, each test case is structured into modular stages to enable

reusability and composability across different test targets, such as setup, validation, and

teardown of volumes, warm-ups, and servers, which can be reused and composed across

different test scenarios.
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Table 4.1: Test definition model

Test Metadata Test identifiers, natural language descriptions, relevant execution constraints

Preparation User-generated inputs, development environment templates, warm-up
snapshot definitions

Execution Execution steps, post-test conditions, and clean-up behavior

Test Oracle Expected outcomes, properties and behaviors, assertions

• DP2: Orchestration-aware validation. CodeCanvas provisions and manages Kubernetes

pods and nested containers via a customized Kubernetes operator. The lifecycle spans mul-

tiple abstraction layers from application logic to customized operator actions to Kubernetes

control plane scheduling to storage provisioning. Due to the deep integration of CodeCanvas

and Kubernetes, the test suite is designed to be orchestration-aware, validating the behavior

of the entire pipeline from user input to system response, including all intermediate resource

transitions. Test assertions are based on observed system states, including PVC binding and

snapshot readiness, rather than timeouts or blocking assumptions.

• DP3: Version-robust test logic. To support continuous integration and frequent release cy-

cles, the test suite must remain stable and effective across changes in CodeCanvas versions.

The test logic must account for version-specific differences without requiring interruptive

rewrites, including the use of conditional execution paths, parameterized test definitions,

and assertions under certain feature flags.

4.4 Test Suite Structure

In this section, we introduce the structure of the test suite following the design principles (Section

4.3). The structure of the test suite is designed to systematically capture complex validation logic

in a maintainable and extensible form. It includes how test cases are defined, executed, and inte-

grated with the testing framework, employing a declarative and modular model (DP1) around a

separation between test data injection and validation execution.

Each test case in the suite is defined through a declarative specification that captures both config-

uration inputs and expected behaviors. As shown in Table 4.1, the structure of a test case consists

of the following four primary components.
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Test Metadata. Each test is annotated with a unique identifier, a descriptive summary, and ap-

plicable execution constraints such as execution environment configuration and triggering con-

ditions, which enable conditional test inclusion during test runs, facilitating version-robust test

logic (DP3). When integrating with the testing framework, the test controller interprets metadata

to manage test registration, apply environment filters, and schedule execution across appropriate

clusters and configurations.

Preparation. This component specifies the required system state and user data prior to initiat-

ing the test logic, including user-generated inputs to be stored in the database and object storage,

configuration for development environments, warm-up snapshot definitions and creations. Prepa-

ration is carried out through both application-level APIs and automated UI flows to ensure test

coverage of user-facing and cluster internal orchestration logic (DP2). The test data injector of

the framework translates application API calls and UI interactions to CodeCanvas provisioning

pipeline, including the interaction between the application cluster, custom Kubernetes operator,

and native Kubernetes control plane.

Execution. This component defines the sequence of actions used to perform end-to-end verifica-

tions, ensuring that persistent data, environment states, and components reach the expected state.

It includes the invocation of system workflows, such as restarting environments and triggering

warm-up snapshots. To maintain test isolation and ensure repeatability, test cases can also include

teardown definitions that describe post-condition expectations and cleanup actions. This guaran-

tees that pods are terminated, runtime data is cleaned up, and residual state is removed between

test runs.

The validation suite executes structured checks derived from the test definition, monitoring

logs, resource status, and external APIs to confirm system correctness. Meanwhile, the test re-

sults and runtime logs are processed by the result reporter for test report generation. The test

controller coordinates teardown actions based on execution outcomes and policy configurations.

Test Oracle. A test oracle is a principle that determines whether the observed output of a sys-

tem under test for a given input is correct, fundamentally addressing the decidability problem in

program verification (22). For this test suite, the oracle contains expected system properties, re-

mote storage status, and runtime states of Kubernetes primitives, which will be verified after test

execution.
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4.5 Test Case Categories

This section presents the test suite in detail, organizing test cases around three core validation

use cases derived from the overall validation goals. Component functionality correctness (Section

4.5.1) targets the validation of two core CodeCanvas workflows: the development environment

lifecycle (VG1) and warm-up snapshots (VG2). Data integrity (Section 4.5.2) focuses on veri-

fying that persistent data is maintained correctly across version upgrades (VG3). Cross-version

compatibility of components (Section 4.5.3) evaluates whether system components remain inter-

operable under newer deployments (VG4).

Given the complexity of CodeCanvas workflows and their orchestration across distributed Ku-

bernetes components, we adopt a dual-coverage strategy to guide the design of the test suite.

Structural coverage ensures that core user workflows and components are functionally validated,

while operator command coverage provides evidence that all relevant backend logic is exercised

in the Kubernetes Operator and is covered by the test suite, which is captured through a matrix of

operator commands (create, delete, list, etc.) across resource types (job, pod, etc.). Unlike code

coverage, which is difficult to measure in distributed systems (23), operator command coverage

validates that the test suite not only aligns with high-level workflows but also exercises the essen-

tial logic embedded in the operator. Together, the two perspectives provide confidence that our

validation addresses both expected and edge-case behavior, as well as the underlying mechanisms

implementing them.

To maximize efficiency without compromising thoroughness, the test cases are designed ac-

cording to a minimal–maximal principle (24): a minimal set of cases is selected such that it

achieves maximal coverage under both structural and operator command metrics. This design

choice reduces redundancy, shortens execution time, and limits maintenance overhead.

To approximate the coverage of the large input configuration space for each use case, random

input generation is used as a representative sampling technique. The resulting operator coverage

serves as an upper bound of achievable command–resource combinations under the given scenario.

Therefore, the operator coverage of the final test cases should preserve all command–resource

pairs observed in the sampled space while avoiding unnecessary duplication, thus reducing testing

resources without sacrificing the coverage of validation.

4.5.1 Use Case 1: Component Functionality Correctness

This use case addresses the core functional behavior of the CodeCanvas application and its or-

chestration of remote development environments in a Kubernetes-based infrastructure. It verifies
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Table 4.2: Configuration space of UC1 - component functionality correctness validation

Template Configuration Compute instance type, IDE type, IDE version and IDE settings,
SSH configuration, Environment variables, Standby pool,
Development environment lifecycle scripts, Personal parameters,
Cloud policy

Warm-up Configuration Presence, Warm-up scripts, Warm-up parameters

User Roles User access

that each infrastructure component involved in the development environment and warm-up lifecy-

cle continues to function as expected after a Kubernetes cluster update. Since core infrastructure

components are tightly coupled to specific workflow stages (Section 4.1), validating workflow

execution correctness directly validates component correctness and their integration, addressing

VG1 and VG2.

To systematically validate this behavior, we translate component responsibilities into expected

workflow transitions and verify them post-update. The test cases in this category focus on execut-

ing primary workflows of the development environment lifecycle and observing their successful

transitions, such as creation, activation, and deletion. These observed transitions are then validated

against a formal finite state machine shown in Figure 4.2 that encodes the correct sequence of

environment states. This modeling ensures that the testing oracles are correctly calculated through

different combinations of user actions. This model ensures that testing oracles are derived con-

sistently across various combinations of user actions. Inputs include the creation and deletion of

configuration templates, warm-up snapshots, and development environments, with failure states

also considered.

Furthermore, at the component level, the test cases ensures that the Kubernetes Operator in-

vokes the correct APIs, and that the backend orchestration across components like the Code-

Canvas Application, Jump Server, and Relay Server remains operational. Log availability is

also assessed to ensure traceability and remote storage accessibility.

Configuration Space. The configuration space represents the input domain from which test in-

stances are derived. It defines the structural setup of each test case, influencing both the data

created during test initialization and the functional pathways exercised during test execution.

For this use case, each execution path of a development environment workflow is parameterized

by the configuration space that influences both component behavior and their interactions. Thus,

to comprehensively validate the correctness of components and their orchestration, it is essential
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Figure 4.2: Finite state machine of development environment workflow

to assess system behavior across a representative span of the configuration space. As shown in

Table 4.2, the configurations represent key dimensions that influence the behavior of components

during the development environment lifecycle.

Test Cases. Table 4.7 outlines the test cases designed to validate component functionality cor-

rectness following a Kubernetes cluster upgrade. Each test targets a critical part of the development

environment (dev. env.) lifecycle. TC-01 exercises the warm-up and environment creation flow,

verifying end-to-end orchestration and template reuse. TC-02 checks the accessibility and persis-

tence of logs for development environments that were created prior to the upgrade, while TC-03

performs a similar validation for warm-up snapshots.

Structural Coverage. Implementing VG1 (development environment lifecycle correctness) and

VG2 (warm-up snapshot validity), the initial test design is informed by core workflow models de-

rived from relevant lifecycle transitions (Figure 4.2), such as creating, restarting, and deleting

development environments and warm-up snapshots. These workflows are then encoded as testable
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Table 4.3: Test cases of component functionality correctness validation

ID Description Preparation Execution Test Oracle

TC-01 New warm-up and
dev. env. creation.

Create a template
configuration and
then create a warm-up
snapshot of the
template via API.

Recreate warm-up with the
template and create a new
dev. env. with that new
warm-up.

The environment is
active, the
warm-up is
overwritten.

TC-02 Log access of
pre-created dev.
env.

Create a template
configuration, create
and stop a dev. env.
via API.

Open the pre-created dev.
env. and download
environment logs.

The logs are
persistent and
accessible.

TC-03 Log access of
pre-created
warm-up snapshot.

Create a template
configuration, create a
warm-up snapshot of
the template via API.

Open the pre-created
warm-up snapshot and
download its logs.

The logs are
persistent and
accessible.
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Figure 4.3: Structural coverage of test cases in UC1

sequences involving user actions on environment templates, warm-up states following the config-

urations in Table 4.2.
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As shown in Figure 4.3, the test cases cover the red outlined interactions between core compo-

nents. TC-01 validates the full initialization flow, from template definition to warm-up snapshot

recreation and development environment instantiation, covering transitions through key runtime

states (e.g., Created, Activated, Stopped). TC-02 and TC-03 cover the data access flow from

the CodeCanvas Application Cluster, including user data in the database and the environment logs

stored in object storage.

Operator Command Coverage. To bridge the gap between workflow behavior and backend

implementation, the test suite design follows component analysis in Section 4.1, in which internal

components are exercised by each workflow. Since the main workflow implementation is trans-

ferred by the Kubernetes operator, as shown in Figure 4.1, we adopt operator command coverage

as a structured coverage model through a matrix of operator commands across resource types,

where each row corresponds to a specific operator command and each column corresponds to a

resource type managed by the Kubernetes Operator. Each cell in the matrix contains the number of

times that the corresponding command–resource pair was invoked during test execution. The val-

ues are represented both numerically and through a heat map color scale, where higher frequencies

are shown in lighter shades.

Figure 4.4 shows the coverage upper bound of the operator command matrix through random

input generation. Respectively, Figure 4.5 shows the operator command coverage from the in-

put of the test cases for use case 1. Both matrices have identical command–resource combina-

tions, indicating that the designed test cases achieve complete coverage of the command–resource

pairs exercised by the random sampling approach. This result validates the application of the

minimal–maximal principle, demonstrating that the reduced set of deterministic test case inputs

preserves the implementation-level coverage.

4.5.2 Use Case 2: Data Integrity

This use case targets the reliability of persistent data across Kubernetes cluster updates. It focuses

on verifying that both user-generated artifacts (e.g., template configurations) and system-generated

metadata (e.g., logs, warm-up snapshots) remain intact, accessible, and correctly associated with

their owning entities after the upgrade. These checks directly address VG3, which emphasizes

guarantees on persistent data integrity during version transitions.

Data storage in CodeCanvas may be recreated, remounted, or re-accessed after a Kubernetes

cluster update, such as PVCs, object storage, and block storage. Test cases for this use case

systematically exercise workflows that access or rely on pre-existing data artifacts created prior

to the cluster update event. These include restarting environments, accessing warm-ups and logs,

33



4. DESIGN OF THE TEST SUITE

Figure 4.4: Operator command coverage of random input generation from UC1 configuration space

Figure 4.5: Operator command coverage from UC1 test cases

and interacting with policies or roles that encode permissions. Each test case confirms that no

regression, data loss, or misconfiguration failure occurs as the system resumes operation on the

upgraded cluster.

Configuration Space. The test cases are derived from a structured configuration space that de-

fines the input domain for test execution, which captures all relevant parameters that influence
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4.5 Test Case Categories

Table 4.4: Configuration space of data integrity

Template Configuration Compute instance type, IDE type, IDE version and IDE settings,
SSH configuration, Environment variables, Standby pool,
Development environment lifecycle scripts, Personal parameters,
Cloud policy

Warm-up Configuration Presence, Warm-up scripts, Warm-up parameters

User Roles User access to template configurations and dev. env.

Cloud Policy Corresponding Kubernetes operator, Relay server, Jump server,
Kubernetes service account

Feature Flag User visibility (everyone, certain user groups, certain users)

what data is created, how it is stored, and how it is expected to behave after the upgrade.

As shown in Table 4.4, each configuration option contributes to potential variance in test out-

comes. For instance, warm-up presence and parameters affect snapshot generation and reuse logic.

User roles and cloud policies encode access constraints that impact data visibility and modification

rights.

Test Cases. As shown in Table 4.5, by covering a range of operations that interact with persistent

volumes, warm-up snapshots, and logs, and by executing related workflows, the test suite validates

the system’s ability to preserve data consistency and correctness across upgrade boundaries.

Coverage. From a data integrity point of view, the test cases cover all storage units in remote

storage. TC-02 and TC-03 cover logs access in object storage. TC-06 covers the access of block

storage. The rest of the test cases cover different data types of system metadata stored in the

database, including user data and development environment configurations.

Unlike the functionality correctness use case, where verifying the full range of operator resource-

command combinations is essential, operator command coverage is not a primary focus in the data

integrity context. While operator routines are indirectly exercised by test cases, persistent data is

validated through end-to-end outcomes rather than by explicitly tracking operator actions.

4.5.3 Use Case 3: Cross-Version Component Compatibility

This use case focuses on validating the compatibility between different versions of Kubernetes-

deployed infrastructure components and the CodeCanvas application under continuous integration

and delivery. For instance, after a cluster upgrade, only the CodeCanvas application component
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Figure 4.6: Structural coverage of test cases in UC3

is re-deployed due to changes, while previously deployed versions of the operator, relay server,

and jump server remain active, which emphasizes the need for compatibility testing to ensure

coordination and orchestration correctness across component versions, directly addressing VG4

(cross-version compatibility of core components).

Configuration Space. Similar to use case 1, Table 4.6 lists the configuration space for this use

case scenario, which covers not only all the inputs that request application and native Kubernetes

components but also the inputs that invoke cross-component interactions.

Test Cases. The test cases capture the possible interactions between CodeCanvas internal com-

ponents. TC-01 covers the interaction between Kubernetes operator and CSI Driver through

warm-up snapshot creation post-update. TC-04 to 06 cover the interactions related to the Relay

Server. TC-10 covers the validation of Jump Server interactions with other components through

SSH operations.
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4.5 Test Case Categories

Figure 4.7: Operator command coverage of random input generation from UC3 configuration space

Structural Coverage. To validate compatibility across versions of CodeCanvas components

(CodeCanvas application, Operator, Relay, and Jump server), we focus on integration-critical

workflows that require inter-component communication. As shown by the red outlined arrows

in Figure 4.6, all the interactions of CodeCanvas components are covered by the test cases for this

use case scenario.

Operator Command Coverage. Rather than testing every possible configuration mutation, we

use the operator command coverage matrix to guarantee that all relevant behaviors from the con-

figuration space are exercised. As shown in Figure 4.7 and Figure 4.8, the two matrices contain

the same set of command–resource pairs, confirming that the designed test cases fully cover the

operator-level input space from random sampling.
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Figure 4.8: Operator command coverage from UC3 test cases
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Table 4.5: Test cases of data integrity

ID Description Preparation Execution Test Oracle

TC-02 Log access of
pre-created dev.
env.

Create a template
configuration, create and
stop a development
environment via API.

Open the pre-created
dev. env. and
download
environment logs.

The logs are
persistent and
accessible.

TC-03 Log access of
pre-created
warm-up snapshot.

Create a template
configuration, create a
warm-up snapshot of the
template via API.

Open the pre-created
warm-up snapshot
and download its logs.

The logs are
persistent and
accessible.

TC-04 Reactivate
pre-created dev.
env.

Create a template
configuration, create and
stop a dev. env. via API.

Reactivate the
pre-created
environment.

The environment is
active.

TC-05 Reactivate
pre-created dev.
env. with warm-up.

Create a template
configuration, create a
warm-up snapshot of the
configuration via API, create
and stop a dev. env. using
the warm-up.

Reactivate the
pre-created
environment.

The environment is
active.

TC-06 Create new dev env
using pre-created
warmup.

Create a template
configuration, create a
warm-up snapshot of the
configuration via API.

Create a new dev. env.
via API with the
pre-created warm-up
configuration.

The environment is
created and active.
The warm-up
snapshot is valid
and not
overwritten.

TC-07 Cloud policy
created before
cluster update is
usable post-update.

Create a new cloud policy
via UI.

Create a template
configuration using
the pre-created cloud
policy, create a new
dev. env. with the
template.

The cloud policy
persists. The
environment is
created and active
under the policy.

TC-08 User access
configuration is
persistent after
update.

Configure a custom user role
with certain set of
permissions and create a new
user under that role.

Log in as the new user
and access
CodeCanvas.

The user
permission
matches the role
configuration.

TC-09 Feature flag
configuration is
persistent after
update.

Modify feature flag
configurations as: enable one
feature flag for everyone and
enable another feature flag
for a custom user.

Access feature flag
configuration.

The feature flag
configuration
modifications
persist.

39



4. DESIGN OF THE TEST SUITE

Table 4.6: Configuration space of cross-version component compatibility

Template Configuration Compute instance type, IDE type, IDE version and IDE settings,
SSH configuration, Environment variables, Standby pool,
Development environment lifecycle scripts, Personal parameters,
Cloud policy

Warm-up Configuration Presence, Warm-up scripts, Warm-up parameters

User Roles User access

Table 4.7: Test cases of cross-version component compatibility validation

ID Description Preparation Execution Test Oracle

TC-01 New warm-up and
dev. env. creation.

Create a template
configuration and
then create a warm-up
snapshot of the
template via API.

Recreate warm-up with the
template and create a new
dev. env. with that new
warm-up.

The environment is
active, the
warm-up is
overwritten.

TC-04 Reactivate
pre-created dev.
env.

Create a template
configuration, create
and stop a dev. env.
via API.

Reactivate the pre-created
environment.

The environment is
active.

TC-05 Reactivate
pre-created dev.
env. with warm-up.

Create a template
configuration, create a
warm-up snapshot of
the configuration via
API, create and stop a
dev. env. using the
warm-up.

Reactivate the pre-created
environment.

The environment is
active.

TC-06 Create new dev.
env. using
pre-created
warmup.

Create a template
configuration, create a
warm-up snapshot of
the configuration via
API.

Create a new dev. env. via
API with the pre-created
warm-up configuration.

The environment is
created and active.
The warm-up
snapshot is valid
and not
overwritten.

TC-10 Reactivate
pre-created dev.
env. and test SSH
access.

Create a template
configuration with
SSH configured,
create and stop a dev.
env. via API.

Reactivate the pre-created
environment. Attempt to
connect the environment
using SSH commands.

The environment is
created and active.
SSH connection is
successful.
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Implementation

This section illustrates the practical implementation of the testing framework and the test suite.

5.1 Implementation of the Testing Framework

Following the design principles outlined in Section 3, the testing framework is implemented as

an integrated pipeline within JetBrains TeamCity CI/CD platform, meeting the operational re-

quirements of CodeCanvas, which is a large-scale Kubernetes-based remote development system

undergoing frequent updates. The framework consists of five core components: the test controller,

cluster manager, test data injector, validation suite, and result reporter, which simulate real-world

version update scenarios.

Figure 5.1 depicts the detailed architecture of these components and their interaction at vari-

ous stages of the testing workflow. The test controller is implemented using the Kotlin DSL1,

which allows build configurations to be stored in version control and supports declarative orches-

tration of build pipelines. The test controller specifies the execution order, environment setup, and

dependency handling between stages, ensuring reproducibility across test executions.

The cluster manager consists of scripts for both Kubernetes cluster initialization and cluster

upgrades, using helm2 to manage CodeCanvas deployments. It provisions clusters from Helm

charts and applies Helm chart changes corresponding to target versions. The test data injector

and validation suite are both implemented using JUnit 53, but differentiated by tagging strategies.

Data preparation tests are tagged with "Data", while post-upgrade validation tests use "Suite",

allowing the test controller to run only the relevant subset of tests at each stage of the workflow.

The test artifacts from the data injection and validation suite are gathered, processed, and presented

1Kotlin DSL in TeamCity: https://www.jetbrains.com/help/teamcity/kotlin-dsl.html?Kotlin+DSL
2Helm, a pacakge manager for Kubernetes: https://helm.sh/
3JUnit 5 testing framework for JVM: https://junit.org/
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Figure 5.1: Implementation of the testing framework

by the result reporter, which is implemented using Allure Report1, with an interactive dashboard

summarizing pass and fail statistics.

Execution begins when the test controller triggers the cluster manager’s initialization step for

starting a cluster 1 with a default version, which is executed as a Gradle build task. After the

cluster is provisioned, the controller executes the data preparation tests 2 by running Gradle test

command on tests tagged for data injection. The controller then initiates the upgrade phase by

invoking the cluster manager’s update scripts 3 , applying a Helm release to transition the cluster

from the source to the version-to-be-tested. Once the update is complete, the validation suite is

executed 4 , with the controller filtering for validation test cases. Finally, all the test artifacts are

processed and published at the end of the execution 5 .

5.2 Implementation of the Test Suite

5.2.1 Operator Command Coverage Calculation

To estimate the operator command coverage attauc1-ramdinable within each use case, we imple-

ment a random input generation process that samples from the input space of valid user actions as

described in Section 4.5. For each use case scenario, the input configuration is organized into mod-

ular action sequences, which are randomly invoked 20 times on a local CodeCanvas infrastructure

instance, balancing local instance capacity and performance.

During each execution, the test framework performs the corresponding actions in a controlled

test cluster and records all operator commands invoked by the Kubernetes Operator, along with

1Allure report, HTML test automation report tool: https://allurereport.org/
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their associated resource types, as captured in the operator logs. The collected logs are processed

using a Python analysis script, which extracts command–resource pairs and computes the resulting

operator command coverage. This data was then visualized as a command–resource matrix heat

map, generated with the pandas and matplotlib.pyplot libraries.

5.2.2 Test Case Implementation

The test suite is implemented as a modular collection of automated tests, following the design

outlined in Section 4. It is developed in Kotlin using JUnit 5, with Gradle as the build and execution

engine, ensuring seamless integration with the testing framework described in Section 3.

Each test case follows the structure defined in Table 4.1, consisting of three main components:

test preparation, execution, and test oracle. Test preparation injects the necessary initial test data

into the system, execution performs the operation steps under evaluation, and the test oracle veri-

fies the resulting system state against expected outcomes. Metadata for each test case is maintained

in the test controller, enabling controlled orchestration and selective execution.

Implementation-wise, test preparation methods are annotated with @Tag("Data"), while exe-

cution and oracle methods are annotated with @Tag("Suite") as described in the implementation

of the testing framework. The test methods share a set of utility classes implemented as lightweight

internal libraries, which encapsulate recurring operations such as invoking CodeCanvas APIs, in-

teracting with the web UI, and parsing application logs.

The input to a test case is the data provisioned during the preparation phase, typically consisting

of user metadata, Kubernetes persistent volumes, or volume snapshots. The output is the validation

result produced by the oracle, which includes structured reports and cluster logs. These artifacts

are collected by the result reporter for aggregation and publication.

Adding a new test requires creating a new class in the relevant package, implementing the prepa-

ration, execution, and oracle components by invoking existing testing modules or implementing

relevant APIs, and applying the appropriate tags. Because common orchestration logic is encap-

sulated in utilities, new tests can be added with minimal effort, focusing primarily on the specific

validation logic.
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6

Evaluation

To answer RQ3: How can the effectiveness of the designed testing framework and test suite be

evaluated?, this section presents the experimental validation of the testing framework designed

in Section 3, structured around the three experiments corresponding to three primary use cases

introduced in Section 4: component functionality correctness (UC1), data integrity (UC2), and

cross-version component compatibility (UC3).

The experiments are executed in real deployment environments using production-grade test

workflows. The testing framework simulates a CodeCanvas deployment update for end-users via

the framework components, cluster manager , and test controller. For each test, we verify system

outcomes and compare them against the expected states and properties from the model to assert

correctness post-upgrade. Each experiment addresses a dedicated evaluation research question

and maps onto a subset of test cases, as mentioned in Section 4.

• Q1: Does CodeCanvas function correctly after a cluster upgrade across all critical

infrastructure components?

This question aligns with UC1, focusing on validating the correctness of the components

after updates are made to the system cluster by executing the main system workflows that

cover the invocation of core components. (Section 6.2)

• Q2: Does data stored in remote storage remain valid and accessible after a cluster up-

grade?

This experiment creates different types of data artifacts prior to the upgrade, such as warm-

up snapshots, logs, and certain configurations, and then verifies their availability and cor-

rectness post-upgrade, aligning with UC2. (Section 6.3)

• Q3: Can the CodeCanvas core components be safely upgraded across versions while

preserving both deployment correctness and runtime compatibility?
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Figure 6.1: Experiment deployment pipeline

We evaluate cross version compatibility by mixing different versions of the Operator, Jump

Server, Relay, and Application components in realistic development scenarios. In paral-

lel, we validate that Helm chart upgrades correctly modify Kubernetes resources without

introducing configuration errors. (Section 6.4)

The testing framework and test suite are fully integrated into the CodeCanvas development

pipeline. For every proposed change to the CodeCanvas code base, the entire test suite is auto-

matically executed prior to merge approval with the modified CodeCanvas cluster as the target

version-to-be-tested, ensuring that no change is integrated unless all tests pass successfully. In the

production environment, this process is triggered an average of 20 times per day.

For the evaluation of the three use case scenarios, three targeted experiments are designed to

address the corresponding experimental research questions. Five distinct CodeCanvas versions,

each containing real-world production changes to different system components, are selected as

evaluation targets. The complete test suite is executed on each version, and the outcomes of all

tests are recorded. To reduce the impact of environmental variability and test flakiness, each test

case for a given target version is executed five times, with results aggregated for analysis. A test

case is classified as failed if it fails in all five executions.
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Table 6.1: Experiment environment configuration

Operating System Ubuntu 22.04.5 LTS

Kernel Version 6.8.0-1029-aws

CPU Model AMD EPYC 7R13, 8 cores × 2 threads (16 threads total)

Architecture x86_64

Memory (RAM) 32GB

6.1 Experiment Setup

The experimental setup is designed for scalability using a cloud-based CI/CD tool, JetBrains

TeamCity. As shown in Figure 6.1, experiments are executed on TeamCity build agents run-

ning on Amazon EC2 instances, which are provisioned from a custom Amazon Machine Image

(AMI) configuration to ensure a consistent environment across runs. Each EC2 instance hosts a

Linux-based virtual machine, within which the entire test framework and test suite are deployed.

The test framework is responsible for orchestrating the deployment of Codecanvas Helm charts,

which in turn triggers the creation of Kubernetes clusters using Helm as the package manager.

Once the clusters are provisioned, the test suite is executed directly inside the Codecanvas envi-

ronment running within the Kubernetes clusters. This pipeline allows for end-to-end testing in

isolated, reproducible environments that simulate real-world deployment scenarios. The Linux

virtual machine configuration is listed in Table 6.1.

6.2 Experiment 1: Component Correctness

This experiment evaluates Q1: Does CodeCanvas function correctly after a cluster upgrade across

all critical infrastructure components? The goal is to verify that the system preserves its expected

operational behavior throughout the full development environment lifecycle as the underlying in-

frastructure components undergo changes.

To answer this question, we automatically executed the test cases mentioned in Section 4.5.1

that represent key workflows. From an end-to-end point of view, each test execution not only has

a set of expected system behavior outcomes but is also grounded in a FSM model of expected en-

vironment transitions and states. The test results are validated post-upgrade to confirm alignment

with expected states and transitions.

Each test is run in an isolated namespace to simulate real user environments. First, the envi-

ronment is prepared in a pre-upgrade state by programmatically creating the necessary resources
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Table 6.2: Test results of experiment 1

ID Description Test Oracle Test Result

TC-01 New warm-up and dev. env.
creation.

The environment is active, the
warm-up is overwritten.

Pass (5/5)

TC-02 Log access of pre-created dev.
env.

The logs are persistent and accessible. Pass (5/5)

TC-03 Log access of pre-created
warm-up snapshot.

The logs are persistent and accessible. Pass (5/5)

Figure 6.2: Operator command coverage of test cases in experiment 1

via corresponding API and UI actions defined in Table 4.7. Next, a simulated cluster upgrade

is performed by bumping the Helm chart version to trigger a new deployment. Once the cluster

upgrade is complete, the corresponding post-upgrade actions are triggered (test execution), such

as restarting a development environment or recreating a warm-up. The expected outcome is de-

termined using a FSM oracle, which encodes valid state transitions and behaviors. Finally, the

system’s logs and outputs are reported and validated to ensure consistency with the expected be-

havior, confirming that all components function correctly and no errors were introduced during

the upgrade process.

To justify the complete coverage of the test cases, we calculate the operator command coverage

of this experiment in Figure 6.2, confirming that all critical resource-command combinations for

Use Case 1 are exercised during the tests.
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Table 6.3: Test results of experiment 2

ID Description Test Oracle Test Result

TC-02 Log access of pre-created dev.
env.

The logs are persistent and accessible. Pass (5/5)

TC-03 Log access of pre-created
warm-up snapshot.

The logs are persistent and accessible. Pass (5/5)

TC-04 Reactive pre-created dev. env. The environment is active. Pass (5/5)

TC-05 Reactivate pre-created dev. env.
with warm-up.

The environment is active. Pass (5/5)

TC-06 Create new dev env using
pre-created warmup.

The environment is created and active.
The warm-up snapshot is valid and not
overwritten.

Pass (5/5)

TC-07 Cloud policy created before
cluster update is usable
post-update.

The cloud policy persists. The
environment is created and active
under the policy.

Pass (5/5)

TC-08 User access configuration is
persistent after update.

The user permission matches the role
configuration.

Pass (5/5)

TC-09 Feature flag configuration is
persistent after update.

The feature flag configuration
modifications persist.

Pass (5/5)

Overall, this experiment confirms that all primary workflows operate correctly post-upgrade,

with no regressions or broken state transitions. These results support the conclusion that Code-

Canvas’s core components remain functionally correct across Kubernetes upgrades, positively an-

swering Q1.

6.3 Experiment 2: Data Integrity

This experiment targets Q2: Does data stored in remote storage remain valid and accessible after

a cluster upgrade? The focus is on verifying the durability and consistency of persistent storage

elements such as development environment volumes, warm-up snapshots, and logs across upgrade

boundaries.

To test this, we create a set of controlled data artifacts prior to a simulated cluster upgrade,

including active environments, stopped environments, and warm-ups. After the upgrade, we re-

access these artifacts and performed operations such as restarting environments, downloading logs,

and recreating warm-ups from saved templates. Similar to experiment 1, each test is validated
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using outcome oracles that check for the presence of expected files, the consistency of the envi-

ronment state, and the availability of log content. Unlike Use Case 1, operator command coverage

is not a relevant metric here, as these tests did not aim to exhaustively test orchestration behaviors

but rather to ensure data continuity.

The test results are recorded in Table 6.3. All test cases passed, and data remained accessible and

unmodified after upgrade operations. This includes object storage logs, PVC-mounted workspace

volumes, and metadata artifacts such as warm-up parameters. These results strongly suggest that

CodeCanvas preserves user and system data correctly through cluster upgrades, positively answer-

ing Q2.

6.4 Experiment 3: Version Compatibility

This experiment evaluates Q3: Can the CodeCanvas core components be safely upgraded across

versions while preserving both deployment correctness and runtime compatibility? The goal is

to determine whether system functionality remains intact when certain components are updated

independently, simulating real-world deployment patterns in which infrastructure elements are

updated separately in different versions.

To systematically answer this question, we construct a two-phase deployment setup with the

proposed testing framework. First, we initialized a CodeCanvas cluster with older Helm chart ver-

sions and provision user environments and warm-ups to generate persistent system state. Then, we

upgrade one or more components using Helm, transitioning to newer chart versions. Each upgrade

scenario is followed by a sequence of workflow re-executions (e.g., environment restart, warm-up

recreation) to validate continued compatibility between upgraded and legacy components.

Test coverage is assessed using operator command coverage, which measures the extent to

which the test cases exercise the set of Kubernetes resources managed by the Kubernetes Operator

within the configuration space. As shown in Figure 6.3, all command–resource pairs defined in

the configuration space of Use Case 3 are covered by the test executions.

As shown in Table 6.4, test results indicate that all major workflows including environment reac-

tivation and warm-up access function correctly across component version boundaries suggesting

that upgrade safety holds for critical workflows, affirmatively answering Q3.

6.5 Bug Example

During daily production, the testing framework and test suite have successfully identified bugs in

CodeCanvas development. In one instance, a Helm chart included a conditional statement: {{-
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Figure 6.3: Operator command coverage of test cases in experiment 3

if .Release.IsInstall}}, which creates a Kubernetes secret during the initial installation.

However, when the same chart was applied via a Helm upgrade during a cluster update in our

framework, the condition evaluated to false, causing the secret to be skipped and the update to

fail. This behavior illustrates a Helm-specific upgrade nuance that is not captured by standard test

executions in isolated environments using a fresh installation.
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Table 6.4: Test results of experiment 3

ID Description Test Oracle Test Result

TC-01 New warm-up and dev. env.
creation.

The environment is active, the
warm-up is overwritten.

Pass (5/5)

TC-04 Reactivate pre-created dev. env. The environment is active. Pass (5/5)

TC-05 Reactivate pre-created dev. env.
with warm-up.

The environment is active. Pass (5/5)

TC-06 Create new dev. env. using
pre-created warmup.

The environment is created and active.
The warm-up snapshot is valid and not
overwritten.

Pass (5/5)

TC-10 Reactivate pre-created dev. env.
and test SSH access.

The environment is created and active.
SSH connection is successful.

Pass (5/5)
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Related Work

Testing large-scale Kubernetes-integrated systems like CodeCanvas presents unique challenges,

particularly when ensuring both functionality correctness of the application and native Kubernetes

components as well as compatibility across system updates during continuous delivery cycles.

This section reviews existing research in three key areas relevant to our work: (1) testing container

orchestration systems, (2) upgrade and cross-version compatibility testing, and (3) end-to-end

testing methodologies. Each subsection highlights current approaches, their limitations, and how

our testing solution for CodeCanvas addresses the identified gaps.

7.1 Testing Container Orchestration Systems

Research on testing container orchestration systems, such as Kubernetes and Docker Swarm, has

largely focused on functional validation of their native orchestration features (9, 25, 26)and appli-

cations that are deployed within such systems (11). In addition, prior work has investigated in-

tegration testing techniques targeting both distributed applications and the underlying Kubernetes

control plane (27, 28). However, these approaches frequently rely on single-cluster setups and syn-

thetic workloads, which may not fully capture the complexity and variability of production-scale

deployments.

In contrast, the framework proposed in this thesis conducts functional validation across multiple

layers, capturing both the native Kubernetes components and the system’s customized orchestra-

tion logic. Furthermore, it evaluates system behavior under realistic, production-like workloads in

real-world contexts.
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7.2 Cross-Version Compatibility Testing

Maintaining compatibility across versions of software components is a persistent challenge in

modern systems. Jayasuriya et al.(29) proposed a comprehensive taxonomy of version incompat-

ibility changes that lead to update failures in Java projects, providing a systematic classification

of breaking changes in system updates. McCamant et al. (30) identified incompatibilities among

software components during real-world upgrades and implemented a framework to predict pos-

sible upgrade failures due to component versions. Focusing specifically on backward incompat-

ibilities, Ruiz et al.(31) conducted large-scale regression testing on consecutive version pairs of

widely used Java libraries, revealing 280 groups of behavioral incompatibilities that could not be

detected through signature analysis alone. Complementing these studies, Horton and Parnin(32)

introduced V2, a feedback-directed testing strategy designed to identify outdated code snippets or

configurations during updates.

Existing research targets static libraries or single-component upgrades. However, our testing ap-

proach evaluates multi-component compatibility by simulating real-world end user updates under

realistic cluster conditions and integrating automated upgrade testing into a continuous integration

workflow.

7.3 End-to-end Testing

End-to-end testing is a software testing methodology that evaluates the complete functionality of

a system in a production-like environment. Unlike unit testing, which targets individual functions

or classes, and integration testing, which focuses on interactions between selected components,

end-to-end testing assesses whether the system behaves as expected when all components inter-

act under realistic operational conditions. In the context of Kubernetes-integrated systems, this

includes the full lifecycle from system deployment and validation of system behavior to system

termination.

Several end-to-end testing approaches have been developed for containerized and Kubernetes-

based systems. Reile et al.(28) introduced Bunk8s, a microservices testing tool that integrates

with CI/CD pipelines and container orchestration systems to launch and coordinate test runner

containers in dedicated pods. Gu et al.(25) proposed Acto, an end-to-end testing framework that

models Kubernetes Operators as state machines and systematically explores their state transitions

to verify both operator correctness and the ability of managed systems to reach intended states.

Maliekal (33) proposed an automated testing framework for system deployed in Kubernetes, in-
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cluding a CI/CD platform integration which executes unit tests and static code analysis before

cluster deployment.

Compared to these approaches, the testing framework and suite developed in this thesis extend

the scope of end-to-end testing by validating not only native Kubernetes functionality but also

customized orchestration logic and integrated services under real-world workloads. Furthermore,

it integrates cross-version compatibility tests into the CI/CD pipeline, enabling early detection of

upgrade-introduced regressions.
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Conclusion

8.1 Answering Research Questions

Through a use-case study on the remote development platform JetBrains CodeCanvas, this thesis

addresses the lack of a systematic methodology and automated framework for end-to-end test-

ing of Kubernetes-integrated systems that both run as applications on Kubernetes and incorporate

orchestration logic within the Kubernetes control plane.

We contribute a methodology for the design of an orchestration-aware, continuous end-to-end

testing framework and suite, validated through the design, implementation, and evaluation of

a concrete testing solution for CodeCanvas. While developed for CodeCanvas, the methodology

and framework are generalizable to other Kubernetes-integrated systems, such as OpenShift-based

platforms.

RQ1: How can we design a continuous orchestration-aware testing framework for Kubernetes-

integrated systems? We answer this question by introducing a design methodology that begins

with a system workflow analysis to identify relevant components, orchestration logic, and their

interdependencies. This is followed by a functional and non-functional requirements analysis,

ensuring coverage of both application-level and Kubernetes control plane behaviors. Based on

this, we designed and implemented a testing framework for CodeCanvas that (i) incorporates

orchestration-aware mechanisms to capture interactions between custom Kubernetes logic and

core cluster components, (ii) supports validation across cluster upgrades, and (iii) integrates with

the CI/CD pipeline for continuous execution.

RQ2: How can an effective test suite be constructed for Kubernetes-integrated systems?

We propose a three-step methodology for the design of the test suite, including (i) a component
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analysis of the system under test to identify the functional scope and integration points between

application components and Kubernetes resources, (ii) the identification of design principles that

define the structure of the test suite, and (iii) the derivation of validation goals that capture both

functional correctness and orchestration-level guarantees. These validation goals are then sys-

tematically mapped to three representative use case scenarios, which are in turn transformed into

concrete test cases. Each test case is designed to minimize input space while maximizing coverage,

enabling efficient and thorough validation.

• RQ2.1: Which components of a Kubernetes-integrated system must be tested? The

component analysis identifies both application-specific services and Kubernetes compo-

nents that directly influence orchestration behavior. These components form the primary

test scope.

• RQ2.2: What are the expected behaviors and outcomes for different Kubernetes-based

system components under various conditions? We perform a component analysis on the

CodeCanvas application and customize Kubernetes components, identifying the detailed

behavior of each component and possible failures of the components. This forms the foun-

dation for defining validation goals and constructing relevant use cases.

RQ3: How can the effectiveness of the designed testing framework and test suite be eval-

uated? We evaluate the framework and suite by integrating them with JetBrains TeamCity,

the CI/CD pipeline hosting CodeCanvas. The framework was executed in repeated test runs

across multiple CodeCanvas versions, each containing real-world modifications to application and

Kubernetes-related components. Additionally, the test framework and suite are incorporated into

the safe-merge pipeline, ensuring that every merge request triggers orchestration-aware validation.

This integration led to the detection of bugs that were undetectable by conventional functional test-

ing.

8.2 Limitations and Future Work

The proposed framework and test suite have proven to be effective for CodeCanvas, but their

scope is still limited due to design trade-offs made to balance coverage and feasibility. The appli-

cability of the testing framework to systems with different architectures or workloads has not yet

been tested. Meanwhile, the test suite is designed with deterministic scenarios and minimal input

configurations to achieve high coverage efficiently, but this may overlook rare or complex orches-

tration failures. Future work could apply the framework to a wider range of systems, including
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fuzzing or chaos testing to detect non-deterministic issues, and introduce adaptive mechanisms to

update test cases as orchestration logic or Kubernetes versions change.
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Appendix A

Reproducibility

A.1 Abstract

This artifact appendix describes the experiment set up as well as the implementation of the testing

framework and the test suite.

A.2 Artifact check-list (meta-information)

• Program: CodeCanvas code base (private), Operator log processing script (https://github.
com/PinkRay7/operator_logs)

• Compilation: Gradle (Kotlin)

• Run-time environment: Ubuntu 22.04.5 LTS, Kind, Kubectl (Client Version: v1.32.0, Kustomize
Version: v5.5.0, Server Version: v1.33.1)

• Hardware: AWS Cloud

• Execution: TeamCity Build Agent

• Metrics: Failure detection rate, Operator command coverage

• Output: Execution logs and media (screen recordings and screenshots)

• How much disk space required (approximately)?: 32GB

• How much time is needed to complete experiments (approximately)?: For one target version
per run, approximately 1h

• Publicly available?: No

• Workflow framework used?: TeamCity Kotlin DSL

A.2.1 How to access

not publicly available
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A. REPRODUCIBILITY

A.3 Installation

JetBrains TeamCity, JetBrains Spacecode, kind cluster, docker (to publish CodeCanvas image)

A.4 Experiment workflow

As described in Section 6.1.

A.5 Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html
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