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“I am the master of my fate, I am the captain of my soul”

from Invictus, by William Ernest Henley
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Abstract

Serverless computing has become a popular cloud model because it covers much
of the infrastructure management and allows developers to concentrate on the
application logic. However, a major drawback is its limited use in latency
sensitive applications due to the problem of cold start latency. Cold starts occur
when a function is invoked after a period of inactivity, forcing the platform to
provision resources, initialize containers and load code before the request is
served. These delays, often lasting several seconds, hurt the user experience

and make serverless platforms less suitable for time-critical applications.

Several techniques have been proposed to reduce startup time, including pre-
warming, snapshotting and lazy loading. Although helpful, they usually come
with trade-offs in efficiency, portability or adaptability. This thesis explores a
different direction by combining large language models (LLMs) with structured

inputs and observability to adaptively optimize cold start performance.

The framework breaks cold-start latency into seven stages using a profiler and
turns the measurements into structured prompts. Based on these prompts,
LLMs generate configuration-only patches for Knative service manifests. A
closed-loop controller applies patches with built-in guarding policy and rollback

policies, ensuring that changes remain safe and stable.

Experiments on three representative workloads (lightweight, dependency-heavy
and network-bound) show cold start reductions of up to 65-84% compared to
static baselines. These results indicate that structured, LLM-driven optimiza-
tion provides a reliable and general approach to reducing cold-start latency in

serverless systems.
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Introduction

Serverless computing is one of the key innovations in modern cloud technology. Serverless
computing helps developers focus on the application side, while infrastructure management
is handled by providers. In 2014, Amazon introduced AWS Lambda, the first major
serverless service that made the idea popular (I) and very quickly Microsoft Azure and
Google Cloud followed by introducing their own Function-as-a-Service (FaaS) platforms.
As serverless computing has improved over time, they became the most important part in
the modern cloud computing era(2)).

Serverless reduces the effort required to manage infrastructure, allowing new applications
to be built and deployed quickly. The pay-per-use model makes serverless even more
attractive, as it saves costs by removing the need to keep idle servers running (3)).

However, the benefits of serverless computing come with its own limitations. A major
challenge is vendor lock-in, as applications often become closely tied to a provider’s plat-
form. In addition, observability, debugging and compliance requirements can be difficult
in managed environments. Among these challenges, cold start latency is one of the
most important problems to adopt serverless applications for latency sensitive applications.
Cold starts occur when a function is invoked after a period of inactivity, requiring the plat-
form to allocate resources, initialize runtime and load application code before responding
back to the request. These delays are often measured in hundreds of milliseconds or even
seconds, can affect the user experience in applications where the faster response from the
application is essential (4)).

Over the years, researchers and engineers have proposed a variety of techniques to miti-
gate cold-start latency. Common approaches include container pre-warming, snapshotting
execution environments, optimizing runtime initialization and predictive scheduling of re-

sources. While each of these solutions shows really good progress, they often have trade-offs
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related to resource consumption, workload-specific tuning or system complexity.

This thesis presents a framework that reduces cold start latency in Knative by using a
stage profiler and a closed-loop optimizer that proposes configuration-only patches with
an LLM. The profiler decomposes each cold start into seven stages and points out the
current bottleneck while the system is running. The controller reviews each proposal
against schema rules and tolerance bands, runs a quick test on live traffic, rolls back
automatically if needed, and applies the accepted changes as new Knative revisions. The
application code and images remained unchanged. The framework is evaluated on three
workload types and three LLM models,compared with static baselines defined separately
for each workload, each using a single fixed configuration that remains unchanged over time.
This work demonstrates that combining stage-level observability, safe automation and an
LLM driven optimizer at the Knative level provides a practical solution that consistently

optimizes cold-start latency in serverless services.

1.1 Plagiarism Declaration

I confirm that this thesis work is my own work, is not copied from any other source (person,

Internet, or machine), and has not been submitted elsewhere for assessment.

1.2 Thesis Structure

This thesis is structured as follows. Chapter [2| presents the motivation and introduces the
research questions. Chapter [3|formalizes the problem, including objectives, assumptions,
and evaluation metrics. Chapter 4] describes the system design and key architectural
decisions. Chapter [5| details the evaluation on the various workloads, comparing both
baselines and LLM optimized results. Chapter [6] discusses future directions and potential

extensions. Chapter [7] concludes with a summary of findings and contributions.



Motivation

Serverless computing has grown into a widely adopted cloud model, yet its use is still shaped
by performance challenges that appear during function startup. Among these, cold start
latency stands out because it directly impacts user experience and limits the suitability of
serverless platforms for latency critical applications such as interactive services, financial
transactions and real time analytics (4, [5). Addressing this challenge is the main motivation
for the approach proposed in this thesis, which seeks to reduce cold start delay during
normal operation without changing application code or images.

To support this motivation, several techniques have been developed to reduce startup
latency. For example, container pre-warming strategies maintain pools of pre-initialized
containers that are ready to serve requests, thereby reducing cold-start delays. Lin and
Glikson (€) demonstrate that pool based pre warming can reduce P99 latency by as much
as 85%, though at the expense of resource overhead. Snapshot and memory prefetching
were the approaches that were used in REAP (7)), which accelerates the start by persisting
execution states and preloading memory pages, achieving speeds of up to 3.7x. Another
common method is the use of warm-up strategies, where platforms such as AWS Lambda
rely on scheduled invocations or background activity to keep functions alive, trading im-
proved performance for higher operational costs (8). Application-level optimizations, such
as lazy loading of dependencies, defer initialization until required, thereby reducing initial
latency but shifting the overhead to the first set of requests (4)). Some research focuses on
ML-specific workloads, where techniques such as model quantization and code trimming
reduce memory footprints and initialization time, thereby lowering cold start latency, al-
though often at the cost of reduced model fidelity (5)). Finally, systems like WarmSwap and
Pagurus (9)) explore dependency sharing and reuse of inter-function containers, enabling

millisecond-level cold starts but often requiring sophisticated platform support. Together,
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these methods show a wide range of solutions but also recurring trade-offs in cost, porta-
bility, and generalizability.

In summary, existing solutions reflect three recurring themes:

e The performance improvements often come at a cost, such as higher resource usage

or reduced accuracy.

e Many techniques remain platform specific, limiting portability across serverless ecosys-

tems.

e Most strategies are static, lacking the adaptability needed for diverse and variable

workloads.

Even with these improvements there are still important gaps. Keeping functions warm
reduces delay but consumes alot of resources when there is no traffic. Lazy loading shifts
the work to the first requests, so early users experience delays. This is a problem for real-
time applications. Making code or models smaller to start faster can affect the quality of
the results. Saving and restoring snapshots or sharing pieces between services often requires
deep changes and adds day-to-day complexity. Most importantly, many methods use fixed
rules and do not adjust as traffic or workloads change. In shared cloud environments, where
many different services run together and demand can spike or drop without warning, these
static approaches often fail.

To overcome these limitations, recent studies have been explored machine learning and
more recently large language models (LLMs), for automated configuration tuning and op-
timization. Even though these solutions do not directly target optimization in serverless
functions, they show that LLMs can be applied to optimize configuration parameters within
feedback-driven systems. For example, GPTuner (10) leverages LLM to read database man-
uals and synthesize tuning configurations, while \-Tune (I1) demonstrates how LLMs can
generate entire configuration scripts based on workload context,improving robustness com-
pared to earlier approaches Similarly, LLM based approaches like SlsDetector (12]) reveal
the ability of models such as GPT-4 to detect and explain YAML based serverless config-
urations, with accuracy surpassing data driven methods. Studies such as LLMTune (13)
and OtterTune (I4]) show the broader promise of LLM-guided configuration optimization,
from database knob tuning to automated parameter selection in DBMSs. These systems
show that LLMs can handle configuration reasoning and build end-to-end pipelines.

The promise of LLM driven optimization in this domain can be summarized in three points.

e Using pre-trained knowledge to reason over YAML manifests and system parameters.
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e Dynamically generating targeted configuration patches without manual intervention.

e Enabling adaptive, workload-aware optimization that bridges the gap between static

techniques and evolving runtime conditions.

Building on these ideas, this thesis explores how LLM-guided optimization can help
reduce cold-start delays in serverless systems. A profiler breaks the latency into seven
stages and produces signals for each stage, which are then passed to an LLM. Based on
these inputs, the LLM proposes small YAML manifest changes to tune Knative service
parameters. These changes are applied and tested in repeated cycles, creating a feedback
loop that adapts as workloads shift. Rather than relying on fixed, static settings, the
approach offers a more flexible and cost-aware way to cut cold-start latency by making use
of the LLM’s ability to reason over configuration. In this way, it connects existing static

techniques with the need for runtime, workload-aware optimization.

2.1 Research Questions

To formalize the scope and contributions of this work, the following research questions are

posed.

RQ1: How can we design a flexible framework that supports different LLM models

for automated performance tuning?

¢ RQ2: How do different LLM models influence the quality and performance outcomes

of the optimization in the proposed framework?

¢ RQ3: How does the performance of LLM-based optimization vary across various

workloads?

e RQ4: How can the framework be extended to include other optimization techniques

in the same proposed solution?

Together, these research questions frame the contribution of this thesis by demonstrating
how LLM-guided configuration optimization can complement and extend existing cold-start

mitigation strategies.
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2.2 Research Methodologies

2.2.1 (M1) Design and abstraction

To address RQ1 (“How can a flexible framework be designed that supports different LLM
models for automated performance tuning?”), a pluggable optimization framework was de-
veloped for Knative services, with the possibility to extend it to other serverless platforms.
The design followed an optimization loop with four main parts: (i) a deployment layer,
powered by Continum (15))(ii) a stage-level profiler that records performance metrics, (iii)
a prompt generator that translates these metrics into schema-checked instructions and
(iv) an optimizer that proposes configuration changes. These components were placed in-
side a feedback loop, guided by a clear policy that decides when to accept, reject, or roll
back changes. This design ensures adaptability to different LLM backends while keeping

parameter tuning safe and consistent.

2.2.2 (M2) Experimental evaluation across LLM models

To address RQ2 (“How do different LLM models influence the quality and performance
outcomes of the optimization in the proposed framework?”), a set of controlled experiments
was carried out. The framework was connected to multiple LLM backends (ChatGPT,
Claude, Gemini), all using the same prompt schema and acceptance rules. For each back-
end, repeated cold start events were triggered and stage-level metrics were collected. The
evaluation measured the effectiveness of the optimizations, including latency reduction and
stability of improvements, and then compared the influence of different models. The results

indicate whether the choice of LLM backend has a noticeable effect on tuning effectiveness.

2.2.3 (M3) Comparative analysis based on workload

To address RQ3 (“How does the performance of the LLM-optimized framework vary across

different workloads?”), the evaluation was extended to three representative workload types:
1. Lightweight functions
2. Dependency-heavy services
3. Network-bound applications

Each workload was deployed as a Knative service and tested under scale-from-zero events,
both with a static baseline and with the LLM-driven optimization loop. Cold-start latency

was decomposed into seven stages and comparisons were made between workload types.
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This methodology shows how optimization strategies generalize across different services

and whether stage-level bottlenecks change depending on the workload.

2.2.4 (M4) Extensibility through alternative optimization techniques

To address RQ4 (“How can the framework be extended to include other optimization
techniques in the same proposed solution?”), the LLM-based optimizer was replaced with a
non-LLM alternative, namely a Multi-Armed Bandit (MAB) algorithm. The feedback loop,
acceptance rules, and rollback mechanisms remained the same to ensure a fair comparison.
The experiments measured not only performance improvements but also how quickly the
system adapted, its flexibility, and its stability under changing workloads. This evaluation
demonstrates that the framework is not limited to LLMs. Its modular design supports

different optimizers, confirming its flexibility as a general solution.



Problem Formulation

The primary challenge addressed in this thesis is the mitigation of cold start latency in
serverless platforms. Cold starts occur when a function is invoked after being idle and
no pre-initialized execution environment is available. In such cases, the platform must
allocate resources, load the function image, initialize the runtime, and complete warm-up
steps before the request can be served. These preparations introduce noticeable delays,
commonly referred to as cold-start latency (4} ).

Formally, let the cold start latency L be decomposed into the following stages:
L= Lsched + Lpull + Linit + Lruntime + Lproxy + Lapp + Lreqa

Here, Lgchea denotes the scheduling delay, Ly, the time taken to pull the container image,
Liynit the container initialization time, Lyuntime the startup delay of the runtime, Lproxy the
proxy warm-up cost, Lap, the application-level initialization, and Lyeq the time required
to handle the first request. Breaking down the cold start in this way aligns with empirical
studies of Knative, which show that these components contribute differently depending on
the workload and the underlying infrastructure (I6]). The aim of this thesis is to reduce
the total latency L across a range of workloads and environments.

Serverless platforms such as Knative expose a set of tunable configuration parameters,
denoted by 0 = {61,02,...,0,}, which influence these stages. Examples include minScale,
initialScale, concurrency, and container resource limits (17). Selecting optimal values

for 6 is non-trivial because:
e The relationship between 6 and L is highly non-linear and workload-dependent.

e Static heuristics often fail under dynamic, multi-tenant conditions (4).



e Exploring the parameter space exhaustively is infeasible due to time and cost con-

straints (7).
We therefore formulate the optimization problem as
0* = argmin L(0, W, H
g 06@ ( ) ) )7

where W represents the workload type (for example dependency heavy, DB like, or lightweight)
and H denotes the underlying hardware and runtime environment. The goal is to find the
optimal configuration 8* which reduces the cold start latency while satisfying to correctness

and cost efficiency constraints
S.t. C(H) S Cmam R(G) S Rmaxa

where C(#) is the resource cost induced by configuration 6 and R(#) bounds resource usage
such as memory or CPU.

To address this problem, this thesis investigates how large language models (LLMs) can
be integrated into the optimization process. A profiler breaks down cold-start latency into
its individual stages, and the LLM uses these observations to propose targeted configuration
updates 6’. By applying updates iteratively and evaluating their effects, the system moves
toward a more optimized configuration. #* (10) (11) (12).

In summary, the problem can be stated as:

Given a serverless function f, its workload W, and environment H, determine
the optimal configuration parameters 0% that minimize cold start latency L,

subject to cost and resource constraints, using LLM-guided optimization.



4
Design

The framework is built as a feedback-driven system that combines detailed cold-start pro-
filing, observability, and an LLM-based optimizer into a single architecture. Its overall
workflow is shown in Figure [{.I] In broad terms, the system monitors Knative deploy-
ments, breaks cold-start latency into separate stages and uses large language models to
propose targeted configuration changes. These changes are then applied back to the de-
ployment, creating a closed optimization loop inspired by traditional self-adaptive models
such as MAPE-K (I8]).

To enable automated and repeatable deployment of cloud-native serverless applications,
the framework relies on Continuum (15). Continuum simplifies infrastructure provision-
ing and orchestration on virtual machines, providing the base for deploying Knative services
and managing their execution environments. This ensures that profiling and optimization
experiments can be carried out in a consistent and reproducible way.

The observability layer consist of OpenTelemetry (19), which enables fine-grained
tracing of Knative’s request lifecycle. The collected metrics are visualized using Jaeger
UI (20), providing structured insights into cold start events. In addition to OpenTelemetry,
the framework integrates directly with the Kubernetes API to capture additional metrics
that tracing alone does not expose. At the core of this layer lies the Stage Profiler, which
leverages these combined sources to decompose cold start latency into multiple phases,
producing fine-grained measurements that allow for precise identification of bottlenecks.
These traces are then stored as a structured logs representing stage-specific latencies, which
act as input to the autonomous optimizer.

The Prompt Generation module enhances the profiler output by adding contextual

information, such as Knative YAML manifests and node specifications. This information

10
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N
Continuum Autonomous Optimizer

@ ——

Application

LLM Model

Configuration Paramters

Figure 4.1: Framework architecture.

is transformed into structured prompts that highlight stage-specific latencies and configu-
ration parameters. By framing system observations in a form that large language models
can process, this component ensures the optimizer can reason about both performance
bottlenecks and configuration constraints.

Finally, the Autonomous Optimizer integrates large language models into the feed-
back pipeline. Unlike static approaches, this optimizer is implemented as a flexible plug-in
system that can host different LLM backends, including OpenAT’s GPT, Claude or Gemini.
The optimizer consumes stage-level profiling data and generates targeted Knative config-
uration patches (e.g., tuning minScale, concurrency or container limits). These patches
are iteratively applied and re-evaluated, enabling adaptive, workload-aware tuning that
achieve better tuning than fixed static methods

In general, the design follows the principles of self-adaptive systems, bringing together
infrastructure automation, observability and LLM-driven optimization in a single architec-

ture that directly addresses the cold-start challenge in serverless computing.

4.1 System Components

The framework is organized into four main components: (i) the deployment layer, (ii) the
observability stack, (iii) the prompt generation module and (iv) the autonomous optimizer.
Each part has its own role in the feedback-driven loop, and together they help reduce cold-

start latency.

4.1.1 Continuum

Continuum (21) is a framework that automates infrastructure provisioning and applica-

tion deployment across virtualized environments in the compute continuum. It provides

11
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a structured workflow to instantiate virtual machines, configure required system depen-
dencies and orchestrate cloud-native services with minimal manual intervention, making it
easier to reproduce and repeat setups.

Continuum is employed as the foundational deployment layer. It provisions the underly-
ing infrastructure virtual machines and automates the installation and configuration of the
Knative platform alongside the target serverless application functions.By handling low-level
infrastructure concerns, Continuum enables the creation of consistent, repeatable environ-
ments in which stage-aware profiling and LLM-driven optimization can be executed. This
integration allows the framework to focus on measurement and tuning, while Continuum

handles VM creation, platform setup, and service management in a dependable way.

4.1.2 Observability Stack

The observability layer uses distributed tracing and control-plane monitoring to fully record
cold starts. It emits request-path spans using OpenTelemetry (19) and visualizes them
in Jaeger UI (20)), while also querying the Kubernetes API (22) for the official pod and
container state transitions (e.g., scheduling and readiness). At the center of this layer is
the Stage Profiler, which combines these data sources and generates both human-friendly

traces in Jaeger and structured logs for use by the optimization components.

4.1.2.1 Stage Profiler

The Stage Profiler decomposes each cold start into seven phases (see Fig. and records
a time stamp and duration per stage (23)). Monitoring is intentionally simple and source
specific, which means that the first three stages are derived from the Kubernetes
API (pod conditions and container status timestamps), while stages four through seven
are recorded via OpenTelemetry spans generated by the instrumented request path.
This split ensures accurate ground truth for control-plane events and rich context for data-
plane readiness.

Stage 1 — Scheduling (Kubernetes APT)

Definition: Interval from pod creation to admission by the scheduler on a suitable target
node (i.e., PodScheduled="True).

How monitored: Read metadata.creationTimestamp and the PodScheduled=True condi-

tion’s lastTransitionTime. The difference results in a scheduling delay.

12
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Stage-1: Pod Scheduling

Stage-2: Image Pull

Stage-3: Container Init

COLD START LATENCY = t4 Stage-4: Proxy Warm-up

Stage-5: Runtime Startup

Stage-6: Application Init

Stage-7: First Request

Figure 4.2: Classification of cold start latency into 7 Stages.

Stage 2 — Image Pull (Kubernetes API)

Definition: Interval during which container images are fetched and containers transition
to Running.

How monitored: Use Pod events from the Kubernetes API. Look for event messages
such as “Pulling image ...” and “Successfully pulled image ...”. The image pull interval

is measured as the time between these two events, subtracting Stage 1 end time.

Stage 3 — Container Init (Kubernetes API)
Definition: Post—image-pull initialization until the pod becomes Ready/ ContainersReady.
How monitored: Use the Ready=True (or ContainersReady=True) condition’s lastTransitionTime

minus the latest container startedAt from Stage 2.

Stage 4 — Proxy Warm-up (OpenTelemetry)
Definition: Time for the request path (ingress/activator/proxy) to become responsive,
evidenced by the first successful response along the data plane.

How monitored: Active HT'TP probes to the service endpoint were instrumented with an

13
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OpenTelemetry span that began at the first probe attempt after pod readiness and ended
at the first 200 OK, by bracketing these two trace events, the proxy warm-up interval was

obtained.

Stage 5 — Runtime Startup (OpenTelemetry)

Definition: Internal serving-runtime initialization (e.g., sidecar readiness) until the run-
time can stably accept traffic.

How monitored: Readiness annotations emitted by the serving runtime (e.g., queue-proxy)
were surfaced as trace events, an OpenTelemetry span covering the interval from the
control-plane readiness milestone to the runtime’s readiness event was recorded, thereby

yielding the runtime-startup duration.

Stage 6 — Application Init (OpenTelemetry)

Definition: Application-level initialization (framework boot, caches, model load, etc.)
between pod readiness and the first successful application response.

How monitored: The instant of pod readiness (from Stages 1-3) and the first 200 0K ob-
served in traces were linked via an OpenTelemetry span, by capturing this Ready— 200 OK

interval as a single traced segment, the application-initialization time was measured.

Stage 7 — First Request (OpenTelemetry)

Definition: Latency of the first measured request after warm-up, used as the canonical
first-touch metric.

How monitored: Immediately after Stage 6, a single explicit request was generated and
its end-to-end latency was recorded as an OpenTelemetry client span; this span constituted

the first-request metric for cross-run comparison.

For every run, the profiler (i) emits per-stage timings for analysis and (ii) appends a
JSON record with all stage timings and metadata to a log stream used by the optimizer.
4.1.3 Prompt Generation

The Prompt Generation module acts as the link between measurement and action. It
converts diverse low-level data into a single, compact instruction that an LLM can process

consistently. Without a structured prompt, optimization can become unreliable, difficult

14
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to compare across runs and costly in terms of tokens (24). A schema-first template offers
three benefits: (i) consistency in what information the model receives, (ii) safety through
explicit guardrails, and (iii) cost control by limiting token use. This approach is similar to
earlier LLM-based tuning systems that combine manuals, metrics and constraints before

inference. (10) (25).

4.1.3.1 Inputs

The module takes in four inputs:

1. Stage timings: the seven per-stage durations and a minimal history (e.g., latest

and previous runs), including a short bottleneck summary.

2. Service YAML: the current Knative Service manifest, reduced to actionable keys
(e.g., autoscaling.knative.dev/minScale, containerConcurrency, CPU/memory

requests/limits, selected probe parameters).

3. Function/workload type: a concise hint (e.g., dependency-heavy, lightweight/CP U-
light, DB-like/I10-bound) that guides which levers to prioritize (image/initialization

path, concurrency /target alignment, connection/IO posture).

4. Node/cluster specs: CPU cores, memory (GiB), ephemeral storage (GiB), mesh
requirement flag, Knative version and an optional max_replicas_hint; used to en-

sure scheduling feasibility and capacity-aware tuning.

4.1.3.2 How the prompt is generated

All inputs are standardized and arranged into a fixed layout to reduce uncertainty and

variation:

e Objective: Minimize cold-start latency by configuration only.

e Hard Requirements: (i)Config-only edits, (ii) respect node/cluster constraints,

(iii) mesh-awareness.

e Telemetry Block: seven stage durations with units and a top-k bottleneck list

(share of total).

e Configuration Block: current actionable keys and allowable ranges (explicit knobs

the model may touch).

15
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e Constraints: SLO/cost boundaries and scheduling feasibility hints.

e Workload Type: one of {dependency-heavy, lightweight, DB-like} to steer empha-

sis.

e Output Contract: “Return a minimal YAML patch (or compact full Service) as

a single fenced code block; no prose.”

This layout is model-independent, so the same prompt can be used to OpenAl’'s GPT,
Claude’s Sonnet or Google’s Gemini through a plug-in adapter without changing content

or order.

4.1.3.3 Why token budgeting

Long prompts increase both cost and latency, and they weaken the model’s focus. Recent
studies show that when context becomes too long, inference costs increase and accuracy
can drop because attention weights are spread too thin across tokens (26). GPTuner
showed that using compact prompts, which include only the most relevant metrics and
configuration details, can achieve effective optimization at much lower token cost (10).
Inspired by this principle, the module applies token budgeting to reduce unnecessary input

size while preserving the essential context for decision making.

1. Schema compaction: The text is adjusted to follow a stable key order, and numeric

values for stage times are rounded.

2. Delta encoding: The output expresses only the differences from the current mani-

fest, with repeated or unchanged sections represented implicitly.

3. Top-k focus: The system highlights the largest contributing stages together with

any stages above a fixed share threshold.

4. Range summarization: The text is simplified by expressing allowable values as

intervals or enumerations instead of full prose.

These steps keep the prompt within the target budget while preserving the key context

the LLM needs to create accurate patches.
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4.1.3.4 Example output from the prompt generator

# Knative Config Optimization

Your job is to produce an UPDATED Knative Service YAML that improves cold-start latency
— by interpreting the provided stage timings, the current Service manifest and

<+ node/cluster information.

Use the provided inputs to reason about configuration changes.

Keep the output minimal and token-lean.

## Hard Requirements

- CONFIG-ONLY. Do not change app code, image contents or business logic.

- Stay within node budget. Use the provided node/cluster specs; avoid configs that cant
< schedule.

- Be mesh-aware. If a sidecar/mesh is not required, remove it; if required, keep it and
< tune around it.

- Minimal output: return only the YAML file.

- Prefer stability over overfitting. Make targeted adjustments.

## Inputs

### Node/cluster info (concise)

<node/cluster info>

### Function/workload type
- <workload-type>

### Stage timings (verbatim)

<stage-timings>
### Current Service YAML (verbatim)

<current-knative-yaml>

## Output contract

- Return only the YAML file (Knative Service manifest) in a single fenced code block.

4.1.3.5 Why this template matters.

A structured, workload-aware prompt turns telemetry and manifests into a short decision
brief. It ensures safety by avoiding code changes, checks feasibility by fitting within node
capacity and policy, and maintains parsimony by keeping the YAML minimal. The fixed

schema also makes evaluations repeatable and comparable across workloads and LLM
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backends, which is important for a plug-in optimizer. After it is created, the finalized

prompt is forwarded to the Autonomous Optimizer.

4.1.4 Autonomous Optimizer

The Autonomous Optimizer is the decision-making core of the framework. It con-
sumes the structured prompt from the Prompt Generation module and returns an updated
Knative manifest Service designed to reduce cold-start latency using configuration-only
changes. It consists of two parts. The first is a pluggable LLM backend that reasons over
the prompt. The second is the resulting manifest artifact (YAML), which is applied to

create a new Knative revision.

4.1.4.1 Scope of changes

All modifications are confined to the Knative configuration surface i.e., fields and annota-
tions mentioned in the Service YAML. The optimizer does not alter the application code,
the container images or the system architecture. This boundary focuses the approach on

deployment-time levers that impact cold starts while preserving safety and reproducibility.

4.1.4.2 Plugin-based model interface

The LLM is treated as a replaceable module behind a common ‘prompt input, YAML
out ‘ adapter. Different backends can be used interchangeably, for example OpenAl Chat-
GPT (27) , Anthropic Claude (Sonnet) (28), or Google Gemini (29) without changing

surrounding components, allowing fair and repeatable comparisons between models. E|

4.1.4.3 End-to-end flow

1. Inference: The optimizer submits the structured prompt to the selected LLM and

receives only a YAML manifest as output (per the prompt contract).

2. Apply: The returned manifest is applied directly to Knative to produce a new

Revision. The manifest and metadata are logged.

3. Feedback & acceptance policy: After a short evaluation window (e.g., a burn-in

period or fixed request budget), the observability pipeline measures the cold-start

In the prototype, a single API adapter was not implemented because of cost and the differences
between provider APIs. The generator prompts were manually submitted to the chosen LLM, and the

YAML patches returned were applied to create new Knative revisions.
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metric Leyy for the new revision and compares it to the metric of the last accepted

revision, Lyrey. A tolerance 7 defines the acceptance policy:

e Accept (policy): if Loy < Lprev, mark the new revision as the current best

and continue.

e Exploration: if Leyyy > Lprev but Leyr < 7, keep the new revision in place for

now. The framework may continue to explore from this state.

e Revision (update): if exploration shows poor results or the current latency
exceeds the tolerance threshold, create a new revision with updated parameters

and evaluate it.

e Rollback: if the revision performs worse than the tolerance, revert traffic to
the last known good revision (the previous accepted one), restoring the stable

configuration.

The exploration policy can be assigned with a configurable time interval (ranging
from minutes to hours) that determines how long a revision is accepted before further
exploration actions are taken. Similarly, the revision policy also includes a retry
limit, which specifies the number of unsuccessful attempts allowed before triggering

an automatic rollback.

This policy allows temporary exploration within the tolerance, while ensuring that
poor revisions are either updated or rolled back to the best known configuration.
Restricting edits to the Knative configuration layer keeps changes both safe and
auditable, and the plugin design separates model choice from the system logic. The
explicit policies for acceptance, exploration, revision, and rollback act as safeguards
against regressions. Revisions that are only slightly worse are allowed to remain
within the tolerance, but any candidate that performs worse than both the previous

revision and the tolerance threshold is rolled back immediately.
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Evaluation

This section evaluates the framework under continuous operation with changing con-
ditions. The goal is to show how the framework holds cold start latency low and
stable over time on real runs that include repeated scale from zero. The comparison
point is a static baseline per workload that keeps one fixed configuration throughout

the run on the same cluster and traffic pattern.

Three workload classes are used so that different cold start bottlenecks are covered.
The classes are lightweight, dependency heavy and network bound functions. The

cluster is a fixed Knative deployment on virtual machines provided by Continuum.

e Lightweight functions have small images and simple startup such as HTTP

echo, JSON transformation, basic parameter checks and cache lookups.

e Dependency heavy functions have larger images and non trivial startup
such as PDF processing, image conversion, ML model import or multiple library

bootstraps. Latency is driven by image pulls and application initialization.

e Network bound functions call external data services such as SQL queries,
key value store operations or authentication backed lookups. Latency is driven

by connection setup, TLS handshakes, pool warmup and early 1/0O.

These three categories are not chosen arbitrarily but reflect bottlenecks commonly
identified in prior serverless studies. Lightweight functions are the most frequent in
production traces of cloud platforms (30). Dependency-heavy functions represent
analytics and ML workloads, where cold starts are largely due to initialization costs
(31). Network-bound functions capture services in which external I/O and TLS setup

are the main limiting factors (32).
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To measure these effects consistently across workloads, the framework employs an ob-
servability layer that combines the Kubernetes API and OpenTelemetry with Jaeger
to record the seven stage timings for every cold start. The evaluation metric L is
defined as the total cold start time from the scheduling to the first successful request,

as introduced in Section [L.1.4]

All LLM backends are given the same prompt template and token budget to ensure
fair comparison. To create genuine cold starts, scale-from-zero events are triggered at
regular intervals during the hour. The figures show how each LLM backend performs
within the framework and how the framework behaves under continuous operation

with changing load.

5.1 Evaluation Setup

This section defines the environment and protocol used in all experiments. The setup

consists of four parts:

5.1.1 Cluster VMs (Experiment Setup)

The experiments run on a Kubernetes/Knative cluster provisioned via Continuum
across two virtual machines running Ubuntu 20.04, containerd 1.7 and Kubernetes v1.27
with Flannel CNI and Knative Serving v0.26. Observability is provided by the Open-
Telemetry Collector and Jaeger (all-in-one), which record the seven-stage timings for

each cold start. The cluster configuration is as follows:

Controller Node —

e CPU: 8 cores (capacity and allocatable)
e Memory: ~31.36 GiB capacity, ~31.25 GiB allocatable (overhead ~0.1 GiB)

e Ephemeral Storage: ~21.34 GiB capacity, ~19.2 GiB allocatable (overhead
~2 GiB)

e Role: Kubernetes control plane components (API server, scheduler, controllers,
eted).

Worker Node —

e CPU: 8 cores (capacity and allocatable)
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e Memory: ~31.36 GiB capacity, ~31.25 GiB allocatable (overhead ~0.1 GiB)
e Ephemeral Storage: ~21.34 GiB capacity, ~19.2 GiB allocatable

e Role: Executes Knative services and workloads (kubelet, kube-proxy, container

runtime).

5.1.2 LLM backends

The optimizer uses three interchangeable LLM models through the same plugin inter-
face, ChatGPT-5, Claude Sonnet 4, and Gemini 2.5 Pro. Each LLM receives
the seven-stage timings from the profiler, the current Knative Service manifest, and
the node/VM specifications (e.g., CPU, memory, and ephemeral storage). It then
returns configuration-only updates to the manifest. This keeps the rest of the loop

identical across models and cleanly isolates the effect of the LLM choice.

5.1.3 Procedure

For each workload and backend, a 60-minute closed-loop run is conducted. A driver
periodically and randomly triggers scale-from-zero to induce genuine cold starts
throughout the window. After each accepted update, Knative creates a new revi-
sion and the profiler measures the resulting total cold start time L (from scheduling
to the first successful request). All changes are limited to the Service manifest, while
the application code and images remain the same. Baseline runs use a hand-tuned

configuration under the same conditions for comparison.

5.2 Continuous optimization over time

The framework is evaluated under a continuous and dynamic workload. The objective
is to assess performance as traffic and resource conditions change over time and to
compare that behavior with a hand tuned baseline. The closed loop runs with three
LLM backends, ChatGPT 5, Claude Sonnet 4 and Gemini 2.5 Pro, using the
same plug-in interface and the same inputs, namely the stage timings and the current
Service manifest. Each model proposes configuration-only updates and accepted
proposals create new Knative revisions that are measured again by the profiler. The

baseline is tested under the same conditions.
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5.2 Continuous optimization over time

This design supports two evaluations. First, whether the framework keeps cold start
latency low and consistent as conditions change rather than only providing an initial
drop. Second, whether the outcomes are consistent across models, meaning whether
the choice of plug-in has a significant effect on stability over time. The figures report
total cold start time over the run, with the baseline and each accepted revision clearly
marked. Taken together, the results indicate how well the framework fits the use case

and how it compares with the hand-tuned configuration in a dynamic environment.

5.2.1 Lightweight Functions

We evaluate lightweight functions under a continuous, dynamic workload where small
configuration changes can noticeably shift cold-start behavior. The analysis begins
with a hand-tuned baseline to see how it holds up as conditions change, and then
contrasts those results with the LLM-driven loop. Figure shows the baseline time
series for a representative lightweight service. The run begins high at about 43s,
then drops sharply before a small rebound to around 35s. Soon after, latency falls
much further to roughly 15 s, followed by a large spike, and then a long downward
drift toward the best level seen in this trace at about 10s. From there the curve
continues to move up and down rather than holding a steady band. This pattern
shows that a careful baseline picked by an experienced engineer does not stay reliable
once traffic and resources change over time. The configuration needs to adjust to
current conditions (both the available resources and the shape of the workload) to
keep cold-start latency low and stable. These observations motivate a continuous

configuration-based optimization loop instead of a fixed one-time setup.

Figure compares three LLM backends on a lightweight service under changing
traffic. All three show a large initial drop in cold-start latency. Claude Sonnet 4
achieves the strongest early effect, ahead of the others by a small margin that stays
under five seconds. ChatGPT-5 follows closely and Gemini 2.5 Pro is only slightly
behind ChatGPT-5, often by about a second. The small gaps indicate that the
framework makes effective use of the same context across models during the first

phase.

As the loop continues, the framework keeps the cold start latency in a tighter and
more stable range. Initially, Gemini 2.5 Pro drop the cold start latency from 48s to
17.123 s (also observed at 17.174s), a reduction of 30.877s or ~ 64%, ChatGPT-5
drops from 48s and falls to 16.980s, a reduction of 31.020s or ~ 65% and Claude
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Figure 5.1: Baseline configuration on lightweight workload.
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Figure 5.2: LLM-driven framework on lightweight workload.

Sonnet 4 drops from near ~ 44s and drops to 14.237s, a reduction of ~30s or
~ 68%. Over time ChatGPT-5 maintains the most consistent band and continues
to edge down, with later gains below ~ 20% and eventually in the low single digits
~ 3-4%. Claude Sonnet 4 shows very strong points on a few occasions and briefly
reaches lower levels than ChatGPT-5, yet these intervals are short and the overall gap
between the two is small while ChatGPT-5 holds the low band for longer stretches.
Gemini 2.5 Pro remains steady through roughly the first twenty minutes, then shows
a rise that stays within tolerance, a subsequent revision produces a clear improvement

and the curve settles again.
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Across the lightweight workload the three backends perform closely and all outper-
form the baseline. Gemini meets tolerance goals but trails the other two slightly by
the end. ChatGPT-5 finishes with the lowest and most stable after the loop stabilizes.
Claude Sonnet4 delivers the best early reduction and remains stable, though not as
low as ChatGPT-5 at the end. Overall, the framework adapts well in a dynamic
setting and the choice of backend mainly changes how quickly and how far the pat-
tern improves over time. The absolute gaps among the models are small—typically
only a few seconds—and all runs stay within the acceptance tolerance for most of

the window.

5.2.2 Dependency-heavy functions.

Figure shows the baseline behavior for this workload under changing load. The
trace starts around 50 s, improves briefly, then rises and produces a large spike near
235s. Later it drops to the low 20s range, but does not stay there. It climbs
again and moves between roughly 50 and 160s with repeated swings. These wide
movements and long drifts indicate that a fixed, hand-tuned configuration cannot
keep pace with changing conditions. In dependency-heavy services, image pulls and
initialization cost shift with cache state, network conditions, and resource pressure,
which makes the baseline unstable. Because these functions draw more CPU, mem-
ory, and network I/O during startup, a fixed hand-tuned plan is unlikely to remain

efficient as the workload changes over time.

Compared to the baseline, Figure shows that all three models quickly compress
cold starts into a much lower band and then handle disturbances with small and
bounded swings. Gemini 2.5 Pro drops from 50.000s to 8.000s, a reduction of
42.000s or ~ 84%. It experiences a mid-run rise between seven and thirty minutes,
but the increase remains within the acceptance tolerance and is corrected without
rollback. After this period Gemini stabilizes again and remains consistently low until

the end of the experiment.

ChatGPT-5 shows the smallest initial reduction, moving from 40.000s to 21.000s,
a decrease of 19.000s or ~ 48%. However, over time its performance improves further
and it maintains the lowest and most stable latency across the continuous workload

scenario, converging to a narrow band well below baseline.

Claude Sonnet 4 reduces from 43.500s to 29.863s, a reduction of 13.637s or
~ 31%. Although it later drops further, Claude exhibits a mid-run spike that briefly
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Figure 5.4: LLM-driven framework on dependency-heavy workload.

pushes latency back near the initial cold-start level. After a corrective revision is
applied, it returns to the lower range and holds near 30s, but its trajectory remains

less predictable compared to Gemini and ChatGPT.

All three models make the dependency-heavy service far more consistent than the
static baseline. ChatGPT-5 finishes with the lowest and most stable across the win-
dow. Gemini delivers the largest initial drop and, after tolerating a mid-run rise,

maintains a competitive steady state. Claude shows the smallest initial reduction
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and its mid-run instability makes it less reliable, even though it stabilizes later within
tolerance. In steady state, the gap between the three is reduced to a few seconds,
which suggests that the closed-loop policy accounts for much of the sustained gain
regardless of the specific model. Taken together, the traces show a common pat-
tern: rapid early drop, occasional mid-run correction, and settling down to a narrow
band well below baseline, indicating that the feedback loop is the primary driver of

sustained cold-start reduction.

5.2.3 Network Bound Function

Figure shows the trace begins around 47s, dips once to the mid 20s around 16 to
17 minutes, and then trends upward for the remainder of the hour, finishing close to
90s. This early dip followed by a long rise is typical for DB like services because cache
warmups fade, connection pools churn, and disk and network contention accumulate.
The result is a steadily worsening cold start that a fixed manually optimized manifest

cannot counteract, which shows that static tuning is brittle under changing load.

Compared to the baseline, Figure [5.6] shows that all three models quickly compress
cold starts into a much lower band and then handle disturbances with small and
bounded swings. Gemini 2.5 Pro drops from 50.123 s to 14.320s, a reduction of
35.803s or ~ 71%. Claude Sonnet 4 moves from 54.350 s to 14.6845 s, a reduction
of 39.6655s or ~ 73%, and remains within 0.3645s of the Gemini level. ChatGPT
5 reduces from 50.000's to 30.549 s, a reduction of 19.451s or =~ 39%, and then main-
tains the most consistent band across the hour, holding near ~ 30 s and occasionally
reaching as low as &~ 10s. Gemini shows a brief bump between fifteen and seventeen
minutes and around twenty minutes a configuration revision is attempted because
the current latency exceeds the tolerance. The change does not help and the rollback
policy restores the previous setting. After the rollback Gemini settles again and stays
low and stable through the end. Claude follows a similar pattern with one late spike
near fifty three to fifty four minutes that briefly approaches ~ 100s. After a revision

it returns to the low range and holds near ~ 30s.

When comparing the three backends across workloads, each shows its own strength.
In the lightweight case, Claude Sonnet 4 gave the sharpest early drop, but ChatGPT-
5 held the lowest and most stable levels over time. For dependency-heavy functions,
Gemini 2.5 Pro produced the largest initial reduction and recovered quickly from mid-

run rises, while ChatGPT-5 again ended with the most stable long-term trend. In
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Figure 5.6: LLM-driven framework on network bound workload.

the network-bound workload, Claude and Gemini both pushed latency down into the
mid-teens and stayed close together, but ChatGPT-5 maintained the most consistent
range once the run settled. Taken together, ChatGPT-5 stands out for stability,
Claude Sonnet 4 for its strong early reductions, and Gemini 2.5 Pro for its aggressive

initial drops with solid recovery.
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Figure 5.7: Rollback policy on dependency-heavy workload

5.2.4 Evaluation of the feedback loop and rollback policy

A separate experiment is included to show, in a best-case run, how the feedback loop
and the rollback policy behave ( Figure . The run uses the dependency-heavy
workload for one hour under the same settings as the continuous experiments, with
repeated scale-from-zero so that genuine cold starts occur. The LLM backend is
ChatGPT-5. The observability pipeline combines the Kubernetes API and Open-
Telemetry with Jaeger and records the seven stage timings. To make revision events
visible within a single run, the exploration timer for proposing a new configuration

is set to ~ 10 min.

The first accepted change yields an improvement of ~ 53.5%, and the series remains
steady afterward with only a small bump. After a period of stable operation, the
exploration timer fires and a forced attempt is made to test whether a higher level
can be reached, creating revision three. The candidate underperforms and cold-start
latency rises sharply to = 90s, so the rollback policy engages and revision four
restores the last known good configuration from revision two. Once restored, the

latency returns to the earlier low range and stays there for the rest of the run.

This example shows why controlled exploration together with automatic rollback
is necessary under changing conditions. The framework can probe for additional

gains on a fixed interval, detect regressions quickly with guard metrics and tolerance
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checks, and limit impact by returning to the prior stable configuration. In practice,
this keeps the service close to the low range achieved after the first improvement

while still allowing safe attempts to discover a better configuration for the current

window.
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Future Direction

The current framework reduces cold start time and keeps a stable cold start latency
under changing load. It operates as a simple closed loop that proposes configuration
changes, monitors guard metrics and rolls back when needed. The loop generalizes
across workload types and remains well below the static baseline for most of the
hour long runs. The LLM has black box characteristics and its internal reasoning is
opaque. Structured prompting, an explicit output requirement and schema-guarded
fields establish a clear boundary around the model, ensuring proposals remain within
policy and produce the configuration patches the framework requires. Tolerance
checks and a revision log provide practical control over volatility. These results show
that the framework delivers meaningful gains without any changes to application
code or images, while there is a clear room to improve reliability and efficiency. The

following outline future work that can strengthen and extend the framework.
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Figure 6.1: Framework architecture with a Multi-Armed Bandit Algorithm.
6.1 Machine learning model for optimization

As future work, the optimizer can be replaced with a trained model. The closed
loop and guard metrics stay the same, as shown in Figure Only the optimizer
changes. This option fits cases that need offline execution, stronger security, and
more predictable behavior learned from past runs. The model is trained and checked
offline, reports confidence scores, and can skip a change when risk is high. This

makes decisions easier to review and control.

To show this idea, a multi-armed bandit (MAB) is used instead of the LLM (33). The
bandit is lightweight, learns from feedback with simple rules, and balances trying new
options with using good ones. Each arm is a configuration option for a given scenario.
The framework uses a two-level bandit: Level 1 picks the workload type for the next
step, Level 2 picks the stage with the biggest bottleneck in that workload and then
chooses an arm from the allowed patch options. The selected change is applied as a
new Knative Service revision. The framework then computes a reward and updates
the arm values, so later runs are matched with better configurations based on what

was learned.

This MAB uses Thompson Sampling. In a continuous setting, frequent revisions and
too little data per revision sometimes led to uneven behavior because the bandit
did not have enough evidence. Even so, after several runs the bandit started to
settle, and the results below show improvements over the baseline within the same

architecture (Figure 77).

In dependency-heavy workloads, the multi-armed bandit improves total cold start
by about 50%. It starts weaker in the first three stages and then performs well in

the later stages as it settles on stronger settings. It needs several trials to discover a
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Figure 6.2: MAB-based tuning on lightweight workload (cold-start stages)

good configuration, which is expected for a simple explorer and this is the workload
where the machine learning optimizer works best, see Figure [6.3] In the lightweight
functions, the first three stages behave similarly to the baseline. After that it shows
clear gains over the baseline across stages, but the gains are smaller when compared
to the dependency-heavy case. This pattern indicates that the model is effective while
still leaving room for improvement, Figure [6.2] In the network-bound functions, the
overall gain is about 10% with a best case near 15%, Figure[6.4 The improvement is
smaller than in the other workloads. Stage 1 matches the baseline, Stage 2 is better
and Stage 3 trails the baseline. Later stages stay below the baseline but with smaller
margins. These outcomes show that the bandit is a workable foundation and they
suggest strong potential for a machine learning optimizer that learns offline with
richer features and they also show why a learned model can be preferred over an

LLM which remains a black box in this setting.

Overall, these findings highlight that the multi-armed bandit, while simple, plays an
important role in establishing a solid foundation for the framework. It demonstrates
that even lightweight online exploration can uncover meaningful gains and it moti-

vates the shift towards more advanced machine learning—based optimizers that can
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leverage richer state and historical data. This progression shows why bandit-style
exploration provides the groundwork for a scalable and future-proof optimization

strategy.

6.2 Beyond Knative configuration

The focus at present is on Knative service fields, but the same approach could eas-
ily be extended beyond Knative to include platform-specific and infrastructure-level
configurations. In practice, this means that optimization is not limited to annota-
tions within the Knative Service manifest, but could also include settings exposed
by cloud providers such as AWS, Azure or Google Cloud. Modifying parameters at
these levels—such as autoscaling policies, runtime configurations, registry and storage
behavior, networking or DNS resolution and cache or warm pool management—can
influence key cold start stages including scheduling, image pull, container initializa-
tion and the first request. In addition, infrastructure-oriented changes like adjusting
VM-level specifications (e.g., CPU, memory or topology) can shift the readiness base-
line further, reducing total cold start time. Several of the heavier stages are in fact
more constrained by platform or infrastructure limits than by Knative-level service
parameters, which makes expanding the scope both logical and impactful. Since the
LLM remains a black box, the framework gains more scope to focus on exposing
clearer and more auditable levers at these additional layers, enabling stronger op-
timization not only at the Knative level but also across the broader platform and

infrastructure stack.

6.3 Better rollback policy

In future work, the rollback mechanism could be extended with a more structured
delivery strategy such as A—B or blue-green deployments (34))(35). In the current
system, stage timings are monitored after each new configuration and a rollback
is triggered if performance becomes worse. Although this ensures safety, adopting
rollout styles such as A-B or blue-green would make the behavior more predictable
and easier to manage in production (36). These methods would allow candidate
revisions to be tested on a small slice of traffic or in parallel with the current version

before shifting all traffic. Shadow traffic could also be explored as a way to evaluate

35



6. FUTURE DIRECTION

new revisions without exposing users to potential regressions (37). Moving in this
direction would make rollback safer, reduce disruptions and increase the reliability

of continuous optimization.

6.4 Energy aware cold start tuning

The current framework optimizes for latency and does not make energy or cost a
direct goal. A small extension can add simple measurements so that each change
is judged by both total cold-start time and resource use (38). Examples include
CPU time spent per cold start, average idle memory kept and an optional carbon-
intensity label for the time window. Such measurements are already being exposed
by cloud providers, for example through the Google Cloud Carbon Footprint tool
(39). With these measurements in place, the acceptance rule can prefer changes
that reduce latency without increasing these measurements or keep latency within
tolerance while lowering them. The prompt bundle can also pass a small budget hint
so the optimizer suggests changes that save work during quiet periods. The expected
impact is less idle waste, clearer reporting of cost and energy next to latency and
a stable low-latency band achieved with fewer resources. This is particularly useful
in production environments where cost or a fixed budget matters, because it makes

energy and spend part of the decision rather than an afterthought.
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Conclusion

Cold-start latency continues to be one of the most long-standing problems in server-
less computing, limiting the use of these platforms for latency-sensitive applications.
This thesis presented a practical framework that reduces cold-start delay in Knative
by combining stage-aware profiling, structured prompt generation and large language
model (LLM) driven configuration tuning. Static approaches often fail when work-
loads change, but this framework adapts continuously and keeps latency low without

requiring changes to the code or images.

The contributions of this work lie in showing that configuration-only optimization
is sufficient when paired with fine-grained observability and safe automation. By
decomposing cold starts into seven measurable stages, the framework pinpoints the
dominant bottlenecks and translates them into structured prompts for LLM back-
ends. The optimizer proposes targeted YAML patches, applies them as new revisions,
and evaluates their effect in real time. A rollback policy ensures that regressions are

quickly corrected, so performance does not suffer for long.

The evaluation across three workload classes (lightweight, dependency heavy and net-
work bound) demonstrated consistent improvements compared to static baselines. In
measurable terms, the framework achieved cold-start reductions of up to 65—84%,
reducing delays from several tens of seconds to just over ten seconds. Just as im-
portantly, it maintained stable latency bands over time rather than fluctuating as
baselines did. The choice of LLM backend influenced the pattern of improvement,
Claude Sonnet4 delivered the fastest early drops, ChatGPT-5 maintained the most

stable trajectory, and Gemini2.5 Pro provided competitive results after mid-run cor-
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7. CONCLUSION

rections, with overall differences being small in margin. Despite these differences, all

three remained within acceptance tolerances and outperformed static configurations.

These findings can be summarized as follows:

e Stage-level profiling exposes bottlenecks clearly and enables targeted improve-

ments.

e Structured, schema-guarded prompts make LLM optimization safe and repeat-
able.

e Configuration-only changes are powerful enough to yield large reductions with-

out touching the application code or images.

e The feedback loop with rollback policy is the critical driver of sustained im-

provements, ensuring resistance to regressions.

e The differences between LLM backends are small, and the framework works well

across models and workloads.

Together, these results show that black-box models like LLMs can be made reliable
and effective when constrained within a well-defined optimization loop. The frame-
work consistently adapts to changing runtime conditions and delivers performance

improvements that static tuning cannot sustain.

Looking forward, this thesis also identified several directions for this solution. Re-
placing the LLM with a learned optimizer such as a multi-armed bandit or an offline-
trained model could improve predictability, reduce costs and enhance auditability.
Broadening the scope of the optimization beyond Knative manifests to include plat-
form or infrastructure-level configurations would address additional stages. More
improved rollout strategies, including A/B or blue-green deployments, could make
revisions safer in production. Finally, integrating energy and cost awareness into the
framework would align the framework with the sustainability and budget concerns

that matter in real deployments.

In conclusion, this work demonstrates that a combination of observability, structured
reasoning and guarded automation provides a practical path to mitigating cold-start
latency in serverless computing. The framework not only significantly reduces la-
tency, but also gracefully adapts to workload variability, offering both immediate
impact and a foundation for future adaptive optimization systems in cloud native

environments.
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