
A Survey on Energy Aware Offloading Strategies in the Compute
Continuum

Thimo Wuttge
Vrije Universiteit Amsterdam

t.r.wuttge@student.vu.nl

Matthijs Jansen
Vrije Universiteit Amsterdam

m.s.jansen@vu.nl
Tiziano De Matteis

Vrije Universiteit Amsterdam
t.de.matteis@vu.nl

Abstract
This survey investigates offloading strategies in the com-
pute continuum. The compute continuum provides an
infrastructure consisting of the endpoint, edge, and cloud
layers. Offloading strategies refer to tactics that allow
devices to execute tasks on other devices in this system
if their resources are not capable of executing the tasks.
Reasons for offloading tasks are usually driven by ac-
quiring more compute power by utilizing more powerful
or unused resources. We investigate different tactics on
how endpoints can offload tasks to other devices. We
focus thereby on energy-efficiency as a driver for more
sustainable computing. We present different approaches
and highlight how they contribute to energy optimization
in the compute continuum. In addition, we highlight the
advantages these tactics entail and present research gaps
and future research possibilities.

1 Introduction

The compute continuum has emerged as a prominent
infrastructure model, that offers compute and storage
resources while reducing latency. It consists of the end-
point layer, including end user devices like computers,
phones, or smart devices, the edge layer, and the cloud
as visualized in Figure 1. [5] It is able to provide addi-
tional resources with low latency by leveraging the small
network overhead from edge devices as well as nearly
inexhaustible compute and storage resources from cloud
services. Therefore, these two additions to the local exe-
cution systems grew more and more in popularity. [10]
Edge computing, the usage of edge devices as an addition
to local resources, is realized by deploying devices closer
to endpoint devices. These edge devices come with addi-
tional compute and storage resources and can provide
these with lower latency. If the deployed edge resources
do not fulfill the requirements demanded by endpoint
devices, workload-intensive tasks can be offload to the

Figure 1: Offloading in the compute continuum environ-
ment

cloud where resource limitations are minimal.
By deploying this infrastructure, two very pressing

concerns in task execution can be addressed. It allows
users to execute tasks that require additional resources
by offloading them to a more suitable layer and simul-
taneously does not compromise execution deadlines by
time-intensive offloading due to communication over-
head. [27]

The advantages of the compute continuum can be es-
pecially noticeable when a variety of task types are issued
by the endpoint devices. Many latency aware systems,
like hospitals or highly efficient smart factories, deploy
numerous endpoint devices, which issue various tasks.
Some of these tasks may be especially time constraint,
e.g. anomaly detection in patient monitoring, where low
latency plays an important role. Other tasks are resource
intensive but do not need to be executed within a de-
fined time window, e.g. local database backups. Hereby,
the compute continuum can provide an infrastructure
capable of handling these cases.

But offloading tasks introduces increased energy
consumption through additional networking and

1

t.r.wuttge@student.vu.nl
m.s.jansen@vu.nl
t.de.matteis@vu.nl


Reference Year Individual
layers

Offloading
approach

Task
estimation

Energy
efficiency

Individual
strategy Sustainability

Boukerche et al. [9] 2019 ✓ ✓ – ✓ – ✓
Zabihi et al. [32] 2023 ✓ ✓ – – – –
Dong et al. [11] 2024 – ✓ ✓ ✓ – –
Zhang et al. [33] 2024 ✓ ✓ ✓ – ✓ –
Kanupriya et al. [18] 2024 – ✓ ✓ ✓ ✓ –
Nabi et al. [22] 2025 – ✓ ✓ – – –
This survey 2025 ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Related surveys and their focus

compute steps. The compute continuum can optimize
this additional power consumption by assigning tasks
to the most energy efficient layer or by exploiting
idle resources to execute tasks. By implementing this
collaborative computation approach, the users not
only conserve environmentally costly materials, but
also prevent unnecessary energy consumption from
idle devices, contributing to a more sustainable overall
system. [8] This infrastructure can contribute to energy
efficiency through collaborative computing, where
devices share their workload to achieve a more energy
efficient execution and minimize the energy overhead
introduced by additional networking and compute steps.

To highlight the advantages of the compute contin-
uum, we investigate the state of offloading approaches in
current research. We focus hereby on energy efficient tech-
niques that contribute to a more environment friendly
computing infrastructure. We aim to understand how
this infrastructure is currently used, and how future
research can help to make the compute continuum a
more energy efficient platform which supports resource
demanding endpoint systems. The continuous growth in
the number of connected devices is creating additionally
pressure on compute and storage resources, making it
critical to investigate how resource utilization can be
optimized. [1] Therefore, we contribute by focusing on
following research questions:

RQ-1: What is the most suitable layer to offload cer-
tain task to and when should we offload these
tasks?

RQ-2: Based on which strategy can we decide the most
energy-efficient tasks offloading technique?

RQ-3: What are challenges and limitations in the cur-
rent research of energy efficient task offloading
and how can they be addressed in future re-
search?

We provide answers to these research question in the
form of following contributions:

C-1: We introduce a comprehensive system model that
presents the infrastructure of the compute contin-
uum, the identification of certain task complexity
types, and a taxonomy of offloading approaches.

C-2: We outline advantages of each offloading layer
and highlight how current offloading approaches
exploit these.

C-3: We formulate observations throughout this survey
that highlight research gaps and present promising
research directions resulting from these observa-
tions.

The remainder of this paper is structure as follows: In
Section 2 we present related surveys and how we con-
tribute in a different aspect compared to these. In Sec-
tion 3 we present our system model. Sections 5 and 6
present offloading approaches from the aspect of the
target layer and the strategy. And Section 7 highlights
current research gaps, challenges in the field and potential
directions.

2 Related Work

Task offloading is a prominent research field and multiple
previous surveys highlight the different categories of this
research area. We distinguish our work by providing
a comprehensive overview of the whole offloading
landscape with a specific focus on energy efficient
approaches. Additionally, we present a taxonomy on
target layer specific approaches as well as the task
offloading strategy. An overview of our research focus
and a evaluation of related surveys is presented in Table
1.

Individual layers
By categorizing offloading approaches based on the
target layer we can highlight different strategies specific
to this certain offloading target layer. Dong et al. [11]
and Zhang et al. [33] present surveys on individual
layers, but both do not focus on energy efficiency. Zhang
et al. [33] specify their survey on task type evaluation

2



Compute requirement Storage requirement Description

High Intensive Computation-intensive tasks that involve a large
amount of data, such as training machine learning
models.

High Moderate A representative compute-heavy task with moderate
data needs is running a trained machine learning
model.

Low Intensive Data-intensive tasks with lower computational needs,
such as content delivery or video streaming.

Low Moderate Simple, lightweight tasks like sending control instruc-
tions to smart devices.

Table 2: Task types and task examples

which is one aspect we also highlight.

Individual strategies
As part of a second characterization, we want to
investigate the theoretic strategy behind the proposed
offloading approaches. Therefore, we categorize these
techniques and present advantages for each strategy.
A similar approach is presented by Zhang et al. [33]
and Kanupriya et al. [18]. But both do not focus their
surveys on energy efficiency and sustainability.

Energy efficiency and Sustainability
Our motivation for this survey is to study offloading
approaches which optimize the energy consumption
to implement a more sustainable compute system.
Boukerche et al. [9] also focus their survey on sustainable
offloading but only on the aspect of the offloading layer.
They do not include task evaluation and a classification
of the proposed strategies.

3 System Model

To provide a comprehensive overview of the landscape of
the topic, we present a task type classification, describe
the general structure of the compute continuum and
introduce different strategies on which the offloading
approaches are based on.

Task Types
We adopted a classification presented by Gorton et al. [14]
to identify four different task types. We consider com-
pute and storage resources as the fundamental capacity
bottlenecks in our model. We differentiate task types by
analyzing their requirements for these two resources. An

overview of all task types with a representative example
is introduced in Table 2. We adopted this classification
because of the main advantages introduces by the edge
and cloud layer which are the additional compute and
storage resources. They built a fundamental contribution
to the local device and are the most influencing factors
in the investigated offloading approaches.

Compute Continuum Infrastructure

We use the three-layered compute continuum model, as
introduced by Al-Dulaimy et al. [5]. It consists of the
cloud, edge, and endpoint layers.

In this structure, the endpoints are on the lowest level.
Their main purpose is to create data and computation
tasks, which can be offloaded. Therefore, they act as
the source for the offloading strategies presented in this
survey. Additionally, they also provide resources that
can be exploited by other endpoint devices.

The next layer includes edge devices. We include
hereby all devices between the endpoint layer and cloud
layer. These devices provide more compute and storage
resources than the endpoint devices. The main charac-
teristic of the edge layer is the reduced latency compared
to the cloud layer that results from the local deployment
location close to the endpoint devices.

The top layer of our infrastructure is the cloud. It
provides the best compute resources and the most storage
space. However, offloading to the cloud layer comes with
higher latency and can, therefore, increase latency.

The three offloading strategies are presented in Figure
1.

3



Offloading Strategy
A third aspect we consider is the strategy behind the
offloading approaches. We base our categories on a clas-
sification used by Raeisi-Varzaneh et al. [26] and distin-
guish three different categories on which the offloading
technique can be based on:
Heuristics and policies encompass simple binary deci-
sions that are taken throughout the offloading approach.
These are based on comparisons and include different
metrics to evaluate the task complexity.
Optimization algorithms include all algorithm-based
approaches that aim to optimize the scheduling and dis-
tribution of the tasks.
Machine learning-based offloading approaches com-
bine all offloading strategies that include a learning stage
in their strategy. They also aim to optimize the distribu-
tion and scheduling of the tasks but have the advantage
that they can use information gathered throughout the
execution to tune their approach.

4 Methodology

To find a relevant set of literature we applied a combina-
tion of multiple research approaches. We got an initial
set of publications by using a dataset extracted from
multiple publication websites. Additionally, we looked at
multiple conferences relevant to the examined subject.
Since the extracted database and the conferences do
not include the most recent publications, we decided to
also explored multiple online platforms to find relevant
literature from the last year. In the following sections we
will present these three research steps in detail so future
surveys can accurately reproduce our results.

4.1 AIP
To retrieve an initial set of literature we use a dataset
created by the @Large Research team from VU Ams-
terdam1. This database combines literature sets from
multiple publishing platforms. To use this dataset, we
upload it into a PostgreSQL database running in Mi-
crosoft Azure. Our query is divided in three parts. The
first should reflect the task we want to focus on. The
second specifies the different environments, and the third
specific constrictions. We use 2021 as our cut-off date
to make sure we only look at the most recent publica-
tions. We use truncated versions of some search terms
to capture all word forms, including verbs, nouns, and
adjectives. These are indicated by the use of the word
stem followed by an asterisk (*). The query in Figure 2
is a blueprint and reflects how the results are generated.

1The database can be retrieved from
https://github.com/atlarge-research/AIP

A list of the different search terms is presented in Table
3. The search terms are organized based on the query
structure and were collected during an initial exploration
of the topic, using a set of seed publications.� �

1 SELECT *
2 FROM publications pub
3 WHERE pub.title ilike "<<task>>"
4 AND pub.title ilike "<<environment>>"
5 AND pub.title ilike "<<constraint>>"
6 AND pub.year >= <<year>>;� �

Figure 2: Pseudo-SQL query for AIP

«task» «environment» «constraint»

offloading cloud
edge
fog

compute continuum
thing
iot

energy
carbon
power

sustainab*

Table 3: Search terms

This search results in a set consisting of 273 publi-
cations. To further analyze this result, we extract the
cited_by_count number, which is the number of times
this paper is referenced so far by other publications, using
the crossref API for each entry. We calculate the average
citations per year by dividing the total cited_by_count
number by the years it is now published. This is neces-
sary because more recent publications may are not as
much cited as older ones.

In Figure 3 we present the amount of publications
per year. As on can see, includes our result only one
publication for 2024. This is because the dataset was
created in 2024 and does not include every resource from
this year.

4.2 Conferences
Since the extracted literature from AIP does not include
the most recent publications, we apply two additional
research methodologies. Our next step is to look at differ-
ent conferences from which we hope the retrieve fitting
as well as high quality publications. Very prominent con-
ferences are HotCarbon, which focuses on sustainable
computer systems, and ICGCET, which focuses on green
computing and engineering technologies. We included
conferences related to either the environment or the con-
strain as mentioned in Section 4.1. A list of all examined
conferences is presented in Table 4.

4

https://github.com/atlarge-research/AIP
https://hotcarbon.org/
https://icgcet.org/


Name Focus Link

HotCarbon Sustainable computer systems https://hotcarbon.org/

ICGECT
Green computing

and engineering technologies https://icgcet.org/

USENIX ATC Computer system research https://www.usenix.org/

HiPEAC Edge and cloud computing https://www.hipeac.net/

SOCC Cloud computing https://acmsocc.org/

ICFEC Fog and edge computing https://icfec2024.ontariotechu.ca/

HotNets Hot topics in networks https://conferences.sigcomm.org/hotnets/

EuroSys
Systems software

research and development https://2024.eurosys.org/

CloudComm
Cloud computing

technology and science https://www.cloudcom2024.org/

ICDCS Distributed computing systems https://icdcs2024.icdcs.org/

GreenCom
Green computing

and communications https://ieee-cybermatics.org/2024/greencom/

IGSC
Green and

sustainable computing https://www.igscc.org/

Table 4: Conferences

2021 2022 2023 2024
0

20

40

60

80

100 100
89

83

1

Year

N
um

be
r

of
pu

bl
ic

at
io

ns

Figure 3: Publication count per year in AIP dataset

For each conference we analyze the accepted papers
and use the search terms in Table 3 to determine wether
we include the publication in our dataset.

4.3 Research Libraries
Our final step in procuring literature is to query several
publishing websites. This allows us to find the most re-
cent publications. We focused on three renowned services
- IEEE Xplore, ACM Digital Library, and Elsevier. In

this step we focus on the most recent literature, because
we can assume that all relevant publications from 2021
till 2023 were already retriever through querying AIP
or conferences. We adopt the same search terms as pre-
sented in Table 3 and include publications by reviewing
the abstract to make sure it is suitable for our survey
scope.

4.4 Inclusion Criteria
To further assess and evaluate the results, we defined re-
quirements to decide whether we include the publication
in further evaluation. Hereby, we differentiate between
two types of requirements. The first set of requirements
are hard rules. If one of these constraints is not fulfilled,
the publications will not be further assessed.
These are:

• English language
• Full-text available

The second set of criteria were soft requirements. If a
paper did not fulfill these, it can still be included if the
content is relevant for the topic of energy efficient task
offloading.
Our soft requirements are:

• Published between 2021 and 2025
• Research field is Computer Science
• Peer-reviewed

5

https://hotcarbon.org/
https://icgcet.org/
https://www.usenix.org/conference/atc24
https://www.hipeac.net/
https://acmsocc.org/2024/
https://icfec2024.ontariotechu.ca/
https://conferences.sigcomm.org/hotnets/2024/
https://2024.eurosys.org/
https://www.cloudcom2024.org/
https://icdcs2024.icdcs.org/
https://ieee-cybermatics.org/2024/greencom/
https://www.igscc.org/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
https://www.elsevier.com/


Our resulting set of publications, ordered by the normal-
ized citation count introduced in Section 4.1, is further
reviewed and categorized. Hereby, we differentiate fol-
lowing categories:

Layer
Cloud
Edge
Endpoint

Strategy
Heuristic/Policy
Optimization
Machine Learning

Each publication is added to the subcategory of the
offloading target layer and the offloading strategy. This
allows us to focus on the specific subset of publications
which is relevant for each section.

During this categorization step, we can already observe
a current research trend toward offloading to the edge
layer, as most publications focus on this layer.

5 Offloading Layer

In this section, we investigate various offloading strategies
from the endpoint layer towards an offloading target.
We categorize the approaches in regard of the location
of the target. First, we highlight the advantages and
disadvantages offered by each destination infrastructure.
Then, we present the inspected offloading approaches
and, finally, analyze how they address energy efficiency.

5.1 Offloading to the Cloud
The cloud environment includes servers hosted by cloud
providers as well as cloud infrastructure managed on-
premise by the user. Cloud services are characterized
by providing high computational power, large storage
capacity, and advanced networking capabilities. These
resources can be provisioned dynamically, which makes
the cloud a popular environment to run tasks when lo-
cal resources are not sufficient. Cloud services provide
high availability by offering their services over the inter-
net, allowing users to access them with just an internet
connection. [12]

However, by constraining access through the inter-
net, cloud services often introduce latencies that may
not align with execution speed requirements of end-
user applications. Additionally, the cloud layer supports
multi-tenancy, making workload estimation a challenging
task. To handle peak loads, providers run reserved hard-
ware when exceptionally many user want to access their
services. This overprovisioning of resources introduces
higher total energy consumption. [27]

With the additional computation and storage
resources, the cloud became an especially popular

offloading destination for tasks from mobile devices. [33]
But with the drawback of low latency, not all tasks
types can run in the cloud. The endpoint must decide
which tasks to offload in order to benefit from cloud
resources, and which tasks to execute locally due to
latency constraints. Accordingly, we present a range
of strategies that can be employed to address this
challenge. We focus on the strategy, the task type
analysis, and how energy efficiency is realized within
this approach and highlight advantages of each technique.

Task offloading strategies
One fundamental problem during the offloading
evaluation is when the decision to offload tasks is taken
and also when they are offloaded. Hereby, we consider
two different approaches. Tasks can be offloaded either
sequential, where each task is processed as soon as it
is issued, or in batch. In batch processing, an endpoint
device analyses a job consisting of multiple tasks.

Aishwaryna et al. [4] formulate a process which cate-
gorizes each single task into independent and dependent
task. Independent task are fully offloaded or executed
locally depending on their energy usage and execution
time. For independent tasks, the system first estimates
whether dividing them into subtasks would be beneficial.
Based on this, the tasks or subtasks are then executed
either locally or in the cloud. In both cases the tasks
are offloaded immediately after the evaluation and every
tasks is estimated individually, making this an sequential
offloading approach.

Patel et al. [24] apply a strategy, where a local schedul-
ing algorithm determines whether a task should be of-
floaded or not. When a task should be offloaded, a request
is send to an agent running in the cloud. This agent can
refuse the task, if not enough resources are available.
Offloaded task are additionally scheduled in the cloud.
Therefore, the approach is able to optimize the cloud
resource utilization by including batch processing at least
for the offloaded tasks.

Lu et al. [20] calculate the energy consumption from
the view of the endpoint devices for local execution and
offloading. Based on these values, the scheduling algo-
rithm decides which action to take. The task is added
to either the local of the cloud task queue. The queue is
then reordered in regard of the deadline constraint. By
utilizing these task queues, the offloading approach regu-
larly reviews the workload. In this way, the system is able
to comply with both energy and latency specifications
by utilizing a batch processing approach.

Observation 1: Batch offloading enables a more
optimized scheduling solution, but it requires the
system to be aware of the existing tasks. Therefore,

6



it can only be performed at intervals when enough
tasks have accumulated or when multiple devices
offloaded simultaneously to a dedicated scheduler.

Task selection
A fundamental question that needs to be answered when
implementing a good offloading strategy for complex
tasks is how you define a complex tasks. The investi-
gated approaches use multiple metrics gathered before
the offloading decision is taken to estimate the task com-
plexity. These can include task-specific information, such
as the required data or the energy needed to execute the
task, as well as contextual parameters including system
information like available compute resources, current
bandwidth, and more. Especially contextual parameters
can very greatly depending on the current system and
network utilization. Depending on which metrics the
approach includes, we differentiate between task-focused
and context-aware task evaluation.

Lu et al. [20] estimate the tasks based on the local
energy consumption. Hereby, they include the power
consumption and processing ability of the mobile device
while executing a single instruction. For each task they
analyze the amount of instructions needed and calculate
the total energy consumption based on these values.
To evaluate the offloading energy consumption, they
include the energy consumed while sending the tasks
and receiving the result. This approach can also be
categorized as a task-focused complexity evaluation.

To estimate the task complexity, Patel et al. [24] focus
on the energy consumption of a task. To calculate the
energy consumption for local execution, they include
the power consumption for the task, the CPU cycles
needed to execute the task, and the execution speed of the
endpoint device. For offloaded tasks, the formula includes
the energy for sending and receiving data, as well as the
energy consumed in the idle state of the endpoint device
while the cloud executes the task. Additionally they
include the battery level of the mobile device and offload
tasks if it is either more energy efficient to run them in
the cloud or if the local device has not enough energy
left to execute the task. By including the battery level
of the mobile device, this approach includes a variable
factor in the task evaluation, which makes this approach
context-aware.

The first two approaches focus on optimizing the en-
ergy consumption of the endpoint device. Hao et al. [16]
also include the energy consumption of the cloud re-
sources. This addition to the complexity estimation al-
lows the authors to optimize the energy consumption of
the whole system and represents a fully context-aware
approach.

Observation 2: The more factors are included
in the complexity estimation, the more accurately
tasks can be offloaded. By including the current
context of the system, the same task may be es-
timated differently. Therefore, an overview of the
entire system is necessary to obtain a good task
evaluation.

Energy efficiency
In the investigated offloading techniques, energy effi-
ciency is addressed from two different perspectives: device
optimization and system optimization. Device optimiza-
tion focuses on lowering the energy consumption for the
local device only, while the later

Lu et al. [20] and Patel et al. [24] focus on optimizing
the energy consumption of the endpoint device. The
motivation behind this is that endpoint devices often
run on battery power. The offloading technique aims to
maximize the device’s lifespan until the next recharge.

Hao et al. [16] and Aishwaryna et al. [4] introduce
offloading techniques that also analyze the energy con-
sumption of the cloud resources. The energy consumption
of cloud resources is estimated using simulated values.

Observation 3: A holistic energy model is difficult
to develop because the energy consumption of cloud
resources can only be estimated. The data provided
by cloud providers is often limited and may exclude
many relevant factors.

5.2 Offloading to the Edge
The edge layer pushes compute and storage resources
towards the edge of the network. It provides additional
resources while keeping a fairly limited latency downfall.
The edge is a good candidate to offload tasks that
demand additional resources but come with latency
constraints. Often, edge servers are deployed to fit a
certain purpose and, therefore, the amount of backup
resources can be lowered. This does not only bring
down hardware requirements but also the overall energy
consumption. [3] The optimization strategies distinguish
two different approaches. Edge resources may contribute
in a similar manner as the cloud resources and act as
the only addition to the endpoint devices. But they can
also be deployed as an ’in-between’ layer which provides
additional resources to the endpoints with lower latency.

Task offloading strategies
We distinguish only edge-based offloading and hybrid
offloading approaches. Edge-based offloading approaches
only expand the system by including edge resources,
while hybrid solution include edge and cloud resources.
When offloading to edge devices without utilizing the

7



cloud, the approaches mirror strategies used in cloud-
only offloading scenarios. The objective hereby remains
the same and is set to find an optimal distribution
between locally executed tasks and offloaded tasks.

Jiang et al. [17] introduce an offloading and resource
allocation scheme. Their approach works in a time-sliced
manner. In each time slice, a device can issue only one
task to a manager on the edge device. Based on the
task specifications and the resource utilization, the man-
ager decides where the task should be executed. They
present both a centralized and a distributed approach.
The centralized algorithm exploits all available system
information. Due to the fact that this may not be the
case in a real scenario, they limit the system information
in the decentralized algorithm. By doing so, the approach
introduces an uncertainty factor which may exist in a
real life scenario.

Bi et al. [7] on the other hand optimize a set of tasks
through a combination of genetic algorithm, simulated
annealing, and particle swarm algorithm. Their approach
tries to find the perfect distribution for a set of particles
at a certain point in time. Hereby the particles represent
different attributes of the available tasks. The perfect
distribution includes the offloading decision and, where
applicable, the edge server that should executed the
offloaded task. The endpoint devices and edge servers
send their information to an external scheduler which
runs the optimization algorithm. By doing so, an optimal
offloading solution for the whole system can be found.

Observation 4: The availability of system infor-
mation enhances the ability of the optimization
approach to distribute tasks more effectively. Main-
taining the decision-maker’s awareness of the cur-
rent system state is challenging and can only be
achieved through continuous information updates.

Another prominent research direction in recent pub-
lications is the utilization of edge resources alongside
the cloud, called hybrid offloading. This requires an ad-
ditional decision-making step to determine whether the
offloaded tasks should be executed on the edge device
or in the cloud. The investigated approaches either con-
sider the entire system, focus on a subpart of the system,
or concentrate on one layer at a time to determine the
offloading decision. Accordingly, they present three dif-
ferent offloading approaches: system-focused, subsystem-
focused, or layer-focused offloading.

Wu et al. [30] consider a set of tasks belonging to an
application. For each layer they calculate the response
time, defined as the time from submitting a task until its
completion. Additionally, they evaluate the energy con-
sumption for the local device when offloading is done to
each other layer. Based on these two metrics, they opti-
mize the set of tasks using their proposed energy-efficient

dynamic task offloading algorithm, which is based on
the Lyapunov optimization. This approach aims to pro-
vide an optimal offloading solution for the set of tasks
belonging to the application.

Aazam et al. [2] introduce a two-layered approach. The
endpoint device sends tasks to a global gateway which
analyses each task and either forwards it to the edge or to
the cloud layer depending on whether the task includes
complex data or not. Their approach only focuses on
optimizing the offloaded tasks. The initial offloading
decision is taken by the endpoint device. Additionally, a
second scheduling decision is taken by the global gateway.

Teng et al. [29], similar to Jiang et al. [17], propose
a time-slot-based offloading technique. An endpoint de-
vice issues a job consisting of multiple tasks, which are
offloaded in each time slot. The presented break point
strategy checks whether the endpoint possesses enough
compute capacity as well as the required service. If the
endpoint satisfies these conditions, the task is executed
on the local device. Otherwise, the edge layer is exam-
ined. Hereby, only the requested service constraint is
checked. If the edge layer cannot provide the requested
service, the task is offloaded to the cloud layer.

Observation 5: Hybrid offloading solutions en-
able more fine-grained offloading decisions but in-
troduce energy overhead through increased coordi-
nation, continuous context monitoring, and complex
decision-making processes. Additionally, since they
include all three layers, they require more system re-
sources and communication effort across the entire
architecture.

Task selection
If the offloading scheme only includes the edge layer
as alternative execution handler, the task estimation
strategy follows a similar approach like in cloud-only
approaches.

Bi et al. [7] analyze several factors related to compu-
tation and offloading. These include the device’s com-
putation and offloading energy, the cloud’s computation
energy, CPU cycles, storage requirements, and the la-
tency introduced by offloading. These measurements are
combined to formulate an optimization problem. Using
these factors, they evaluate the energy consumption of
each task from the endpoint device’s perspective. Addi-
tionally, they formulate a latency model which estimates
the delay introduced by offloading the task to an edge
device. This approach can be classified as task-focused
with the addition of a latency model.

Jiang et al. [17] also consider the device’s energy
consumption for executing a task. Their main objective
is to reduce the device’s energy usage while meeting
the task execution constraints. But task complexity is
hereby only measured indirectly by finding the best

8



offloading decision for the task. As a result, even simple
tasks may be treated as complex and offloaded when
local resource availability is low. Therefore, this task
evaluation approach can be classified as context-aware.

Since hybrid offloading approaches include edge de-
vices alongside cloud resources in the offloading scheme,
the task evaluation step must additionally decide whether
the task is more suitable for the edge or the cloud.

Aazam et al. [2] utilize a global gateway that decides
whether a task should be offloaded to the cloud or to an
edge server based on the data complexity. In this task-
focused offloading approach, tasks are only offloaded to
the cloud if they include complex or bulky data. Oth-
erwise they are executed on an edge device. Locally
executed tasks are already excluded in this decision,
therefore, the global gateway only needs to decide be-
tween the edge or the cloud as an offloading target.

Wu et al. [30] estimate task complexity using a re-
sponse time model and an energy consumption model.
Based on the outcomes of these two models, tasks are
either offloaded to a dedicated layer or executed locally.
This approach can be classified as a model-based, task-
focused evaluation.

Teng et al. [29] consider tasks dynamically, depending
on the current layer. In the endpoint layer, tasks are
offloaded if they require excessive compute resources or
if a needed service is unavailable on the endpoint device.
In the edge layer, a task is considered complex only if it
requires a service that is unavailable, in which case it is
offloaded to the cloud. This offloading approach includes
two layer-specific, context-aware estimation strategies.

Energy efficiency
By including the edge layer to the system architecture,
the evaluation of energy efficiency becomes more
complex and can now include either the whole system, a
subset of the system, or only one layer.

Aazam et al. [2] use a simulation environment called
SFogSim. This simulation is based on data from Amazon
S3 services as well as Azure Cloud Service. By utiliz-
ing this simulation environment, energy efficiency of the
edge layer is analyzed. This analysis shows that edge
utilization and power consumption follow a linear distri-
bution. Therefore, the edge resources can be utilized but
only with additional energy consumption. Their evalu-
ation focuses only on the edge layer and is, therefore,
layer-based.

Bi et al. [7] use data provided by the Google cluster
to estimate energy consumption on both local and edge
devices. In their approach, they successfully reduce the
combined energy usage of endpoint and edge devices.
Their evaluation only focuses on a subsystem-edge and
endpoint devices-while ignoring energy consumption in

the cloud.
The offloading approaches investigated so far did not

provide a comprehensive overview of energy usage across
the entire system. Ahvar et al. [3] propose an estimation
model for different system architectures in the cloud-
edge infrastructure. Their approach consists of multiple
calculations including the static energy consumptions
of physical machines, the dynamic energy consumption
of allocated machines, and the energy consumption of
networking between the machines and from outside de-
vices. Based on these and other metrics, an estimate
of the system’s total energy consumption is produced.
Although relevant in the context of energy-aware com-
puting, the paper by Ahvar et al. [3] is not primarily
concerned with offloading optimization. Its focus lies on
energy estimation across a cloud-edge infrastructure.

5.3 Offloading to other Endpoints
In addition to offloading tasks to another layer, they
can also be split up and processed by multiple nearby
endpoint devices. This is called collaborative comput-
ing. [31] The target endpoint devices typically come with
very limited computational resources. However, their
advantage lies in the very low latency, as they are often
deployed in the same local network. We present different
approaches for offloading tasks to other endpoint devices
while ensuring correct execution.

Task offloading strategies
Through the limited resource capacity of the devices,
often not more than one task can be considered
to be executed by a collaborative endpoint device.
Additionally, the set of available devices can change
rapidly due to their non-fixed locations.

Tan et al. [28] propose an offloading scheme in which
tasks are either executed locally, offloaded to a collabo-
rative device, or offloaded to an edge server. They utilize
an Ant Colony System to find the perfect distribution be-
tween the offloading strategies for each iteration. Hereby
the availability of collaborative devices is always given.
But this may not necessarily be the case in a real-life
scenario. Since endpoint devices are often mobile, they
may run out of range or a competitive task offloading
source may try to offload to the same target endpoint
device.

Qin et al. [25] introduce a conflict detection scheme
in their offloading approach to solve this problem. They
focus their work on collaborative computing in vehicles.
Because of the mobility of the vehicles, continuous avail-
ability cannot be ensured. Therefore, Qin et al. [25] first
analyze available collaborative vehicles by considering
both the distance as well as their direction. If offloading
is feasible, an offloading request is issued with the vehicle.

9



This request can be denied when not enough resources
on the target vehicle are available. Additionally, they use
a time slot-based approach to regularly verify the avail-
ability of the target endpoint devices and to continuously
optimize the task distribution.

Observation 6: Due to the mobility of target end-
point devices, offloading may not always be possi-
ble. Therefore, their availability must be verified
to ensure that the endpoint device can receive and
process offloaded tasks.

Task selection
Leveraging collaborative devices can only be effective if
the offloaded task is manageable by the collaborative ve-
hicle in appropriate time. Qin et al. [25] divide the tasks
into subtasks which are small enough to be executed in
one time slot. This ensures that time constraints can be
met even with additional communication latency. By
employing task slicing, the approach can offload tasks
that would otherwise be too large.

Energy efficiency
In task offloading scenarios involving collaborative
endpoints, the primary focus lies on reducing energy
consumption at the source endpoint device. The
investigated offloading strategies by Qin et al. [25] and
Tan et al. [28] both use the local energy consumption
as a key optimization constraint. Since the endpoint
devices are often mobile and not connected to a stable
power supply, energy usage must be carefully limited at
the endpoint.

Observation 7: In collaborative offloading scenar-
ios, energy efficiency is predominantly addressed
on the local endpoint device. Sharing information
about energy consumption over the limited network
would introduce an additional overhead. Therefore,
estimating energy consumption of multiple devices
with different consumption models becomes a sig-
nificant challenge.

6 Offloading Strategies

Additionally to the environment where tasks can be of-
floaded to, we want to investigate the offloading strategy.
We distinguish between three categories. Heuristics and
policies, algorithms, and machine learning tactics are
investigated. We highlight advantages and disadvantages
of each approach and present how they are executed in
the investigated offloading strategies.

6.1 Heuristics and Policies
Heuristics and policies include all decision-making ap-
proaches based on simple comparisons or constraints.
Their simplicity is a significant advantage, as they re-
quire minimal resources and can be applied in every
layer of the cloud-edge-endpoint infrastructure. There-
fore, they are often used as an initial filtering step to
identify tasks that are restricted to a specific layer.

Aishwaryna et al. [4] include multiple policies in their
approach. This allows them to categorize the incoming
tasks and decide whether they should be offloaded or
not. Their policies analyze the dependencies between
tasks, the energy consumption during local and offloaded
execution, as well as the execution time during local
and offloaded execution. Their policies compare these
values and decide on an execution action.

Observation 8: Heuristics and policies offer
lightweight, easily deployable solutions that can be
applied on endpoint devices. However, they are lim-
ited in optimizing total energy consumption and
typically fail to account for the system as a whole.

6.2 Optimization Algorithms
Another commonly used approach in offloading strategies
is the application of optimization algorithms. Optimiza-
tion algorithms try to incrementally improve the design
until it can no longer be improved or until the budgeted
time or cost has been reached. [19] The objective in
the investigated offloading approaches is to lower energy
consumption while executing the tasks within certain
service level constraints like execution time. Therefore,
optimization algorithms can be particularly suitable for
offloading techniques.

The range of optimization algorithms is broad and
each one of them fits a certain objective or has a different
approach. To illustrate the application of optimization
approaches in offloading strategies, we present the most
prominent techniques and explain how they were applied.

A population method-based metaheuristic algorithm
is introduces by Bi et al. [7]. Population methods focus
on optimizing a collection of design points. The pro-
posed GSP algorithm is based on the particle swarm
optimization. Each particle records its position, velocity,
and optimal position it visited so far. The goal for this
algorithm is to find a global minimum or maximum. The
particles are then shifted towards this position. [19] In
this optimization approach the particles represent dif-
ferent constraints like the speed of the local CPU, the
power consumed to download data from the edge device,
the available bandwidth, the progress of execution, and
a penalty function based on the total energy consump-

10



tion. Through the particle swarm optimization the best
distribution of these values is found.

Wu et al. [30] and Jiang et al. [17] base their approaches
on Lyapunov optimization technique. Lyapunov opti-
mization works by stabilizing network queues under a
certain constraint. [23] In the investigated approaches
the they try to stabilize the energy consumption under
the constraint of execution delay.

In all proposed techniques, the optimization algorithm
is executed on an additional scheduling node. This com-
putation overhead introduces additional computation
effort as well as network pressure when gathering infor-
mation from the whole system. The tradeoff between
optimization advantage and system pressure must be
considered carefully.

Observation 9: Optimization algorithms can be
particularly useful in offloading approaches. By
defining objectives and constraints, they enable the
optimization of energy consumption while satisfy-
ing certain service level agreements. However, these
approaches often require considerable setup effort
and a dedicated scheduling device. Moreover, they
may introduce computation overhead and network
pressure into the system.

6.3 Machine learning-based approaches
A third category of offloading approaches we highlight
involves strategies based on machine learning algorithms.
We define a machine learning algorithm as one that
is able to learn from data. [13] Therefore, the models
used in the approaches require data for a training phase
beforehand. During the training phase, the models are
fine-tuned to fit the designated purpose. During the
execution the offloading algorithms can estimate their
effectiveness and adapt to sudden system changes.

Tan et al. [28] utilize a Deep Q-Learning Network to
find the optimal task offloading distribution between
the local device and the edge devices. They include a
decision matrix and try to find the perfect offloading
decision to optimize the total energy consumption of
the local device. The energy consumption only includes
the local execution costs and the transmission costs and
neglect the energy consumption of the edge layer. Their
offloading approach requires a learning phase and the
offloading algorithm is performed on a dedicated server.
But by constantly evaluating the offloading decisions
and feeding this information back into the algorithm, the
approach is able to adapt to the current system state.

Observation 10: Machine learning algorithms can
be fine tuned to different system infrastructures. But
to achieve this, they require system data beforehand.

The learning stage comes with additional effort and
the model must run on a designated device, since
endpoint devices are usually not powerful enough
to run them.

7 Research Deficits, Challenges, and Op-
portunities

Based on our observations and the overall investigation
of the topic, we identify the main challenges in offloading
approaches, along with research gaps that present
promising future research directions. Additionally, we
discuss fundamental questions that emerged over the
course of this survey.

System overview
As identified in Observations 1, 2, 4, and 6, a compre-
hensive system overview is a fundamental requirement
for implementing an efficient offloading optimization
technique. Two key challenges arise in this context:
First, gathering current utilization information is
complex due to the amount and variety of devices within
the computing system. The data collection process leads
to additional pressure on the network, as all information
must be send to a central collection point.
Second, the amount and complexity of tasks entering
the system can very significantly over time, making it
challenging to maintain consistent optimization. While
including more tasks in the optimization approach can
lead to more efficient resources utilization, waiting for
tasks to accumulate may slow down the overall process.
Future research aimed at addressing these challenges
should focus on the development of comprehensive
information-gathering techniques capable of collecting
data from all components of the system. Additionally,
task estimation methods represent a promising direction
for further investigation to effectively tackle the
aforementioned challenges.

Energy modeling
Observations 3 and 7 highlight challenges in achieving
a comprehensive energy estimation within offloading
approaches. Modeling the energy consumption of
cloud resources is difficult, as cloud providers limit the
information about energy consumption. As a result, the
energy consumption can only be approximated through
estimation techniques.
In addition, obtaining accurate energy consumption
data of endpoint devices is also difficult. The devices
often run on batteries with limited power supply, making
it essential to avoid unnecessary computational and
networking overhead.
Future research should focus on developing models
for comprehensive energy evaluation that includes the

11



most accurate data as possible from the cloud layer.
Additionally, a lightweight energy data collection scheme
for endpoint devices should be explored to collect data
without applying excessive pressure on the devices or
the network.

Offloading complexity
As detected in Observations 5, 8, 9, and 10, dedicated
scheduling nodes and hybrid solutions can improve
the overall performance and efficiency of the system
but introduce additional hardware requirements and
setup effort. This tradeoff must be considered and the
advantages of a hybrid solution or advanced offloading
approaches can only be exploited with an appropriate
system size. A fundamental research question is how
to integrate the energy-efficient offloading approaches.
Additional focus hereby should be on use cases that
may not necessarily align the proposed examples in the
publications but may still benefit from deploying an
offloading technique.

Energy-proportional computing
As witnessed in the examined offloading approaches is
energy-efficiency either examined on the local device
or a system wide level. But the approaches do not
take the actual efficiency of the edge and cloud devices
into account. Meisner et al. [21] and Barroso et al. [6]
investigate approaches that introduce energy efficiency
by analyzing server utilization. Their research shows
that server utilization is usually between 10% and 50%.
But the energy efficiency of the servers increases with
higher utilization. This is due to the fact that an idle
server already consumes around 50% of its maximum
energy consumption. Their approach is to run some
servers on a higher utilization level and in return shut
down idle servers. This approach could be cooperated in
the investigated offloading approaches.

Sustainability
Hanafy et. al. [15] compare energy-efficiency and carbon-
efficiency and analyze their impact on sustainability.
For this purpose they explore the trade-off of these two
aspects with the help of four computing mechanisms.
They present a fundamental question whether it is more
sustainable to optimize for energy efficiency or carbon
emission. Offloading strategies have a very strong
influence on these two optimization strategies. Research
in the area of sustainable offloading is still very sparse
and the presented strategies do not necessarily represent
the most sustainable solutions.

8 Conclusion

In this survey we investigated different offloading ap-
proaches which focus on energy efficiency. As local re-
sources are often limited and tasks need to be offloaded
to more powerful devices, additional network and com-
pute steps can lead to increased energy consumption.
Our goal was to explore approaches to minimize this
energy overhead by implementing an energy-efficient of-
floading scheme. The three-layered compute continuum
represents an efficient infrastructure to optimize energy
consumption by offloading resource intensive task to the
most suitable layer. We presented different offloading ap-
proaches based on the target execution layer as well as the
offloading strategy they are based on. For each approach
we analyzed the specific offloading technique, the task
evaluation procedure, and the energy estimation method.
We found that current research can be expanded in the
direction of creating a comprehensive and continuously
maintained system overview, evaluating the complete
system energy consumption, and integrating the pro-
posed techniques in current infrastructure. Additionally,
we found that energy-proportional computing can be a
promising approach to optimized research utilization and
could be integrated into current offloading techniques.
And, finally, we considered the question whether energy
efficiency can be considered the only aspect in creating
a more sustainable compute landscape.

References
[1] Cisco Annual Internet Report (2018–2023) White Paper. Tech.

rep., Cisco Systems, 2023.
[2] Aazam, M., Islam, S. u., Lone, S. T., and Abbas, A. Cloud

of Things (CoT): Cloud-Fog-IoT Task Offloading for Sustain-
able Internet of Things. IEEE Transactions on Sustainable
Computing 7, 1 (Jan. 2022), 87–98. Conference Name: IEEE
Transactions on Sustainable Computing.

[3] Ahvar, E., Orgerie, A.-C., and Lebre, A. Estimating
Energy Consumption of Cloud, Fog and Edge Computing In-
frastructures. IEEE Transactions on Sustainable Computing
7, 2 (Apr. 2022), 277–288. Publisher: IEEE.

[4] Aishwarya, R., and Mathivanan, G. COCAME: A Compu-
tational Offloading in Cloud Assisted Mobile Environments
Structure to Enhance Performance and Energy. In 2024 14th
International Conference on Cloud Computing, Data Science
& Engineering (Confluence) (Jan. 2024), pp. 264–271. ISSN:
2766-421X.

[5] Al-Dulaimy, A., Jansen, M., Johansson, B., Trivedi, A.,
Iosup, A., Ashjaei, M., Galletta, A., Kimovski, D., Pro-
dan, R., Tserpes, K., Kousiouris, G., Giannakos, C.,
Brandic, I., Ali, N., Bondi, A. B., and Papadopoulos,
A. V. The computing continuum: From IoT to the cloud.
Internet of Things 27 (Oct. 2024), 101272.

[6] Barroso, L. A., and Hölzle, U. The Case for Energy-
Proportional Computing. Computer 40, 12 (Dec. 2007), 33–
37.

[7] Bi, J., Yuan, H., Duanmu, S., Zhou, M., and Abusorrah,
A. Energy-Optimized Partial Computation Offloading in

12



Mobile-Edge Computing With Genetic Simulated-Annealing-
Based Particle Swarm Optimization. IEEE Internet of Things
Journal 8, 5 (Mar. 2021), 3774–3785. Conference Name: IEEE
Internet of Things Journal.

[8] Bocci, A., Forti, S., and Brogi, A. Sustainable Cloud-
Edge Infrastructure as a Service. In 2023 12th Mediterranean
Conference on Embedded Computing (MECO) (June 2023),
pp. 1–4. ISSN: 2637-9511.

[9] Boukerche, A., Guan, S., and Grande, R. E. D. Sustain-
able Offloading in Mobile Cloud Computing: Algorithmic
Design and Implementation. ACM Comput. Surv. 52, 1 (Feb.
2019), 11:1–11:37.

[10] Casino, F., Lopez-Iturri, P., and Patsakis, C. Cloud con-
tinuum testbeds and next-generation ICTs: Trends, challenges,
and perspectives. Computer Science Review 56 (May 2025),
100696.

[11] Dong, S., Tang, J., Abbas, K., Hou, R., Kamruzzaman, J.,
Rutkowski, L., and Buyya, R. Task offloading strategies
for mobile edge computing: A survey. Computer Networks
254 (Dec. 2024), 110791.

[12] Gajbhiye, A., and Shrivastva, K. M. P. Cloud comput-
ing: Need, enabling technology, architecture, advantages and
challenges. In 2014 5th International Conference - Conflu-
ence The Next Generation Information Technology Summit
(Confluence) (Sept. 2014), pp. 1–7.

[13] Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, 2016.

[14] Gorton, I., Greenfield, P., Szalay, A., and Williams, R.
Data-Intensive Computing in the 21st Century. Computer
41, 4 (Apr. 2008), 30–32.

[15] Hanafy, W. A., Bostandoost, R., Bashir, N., Irwin, D.,
Hajiesmaili, M., and Shenoy, P. The War of the Efficien-
cies: Understanding the Tension between Carbon and Energy
Optimization. ACM SIGEnergy Energy Informatics Review
4, 3 (July 2024), 87–93.

[16] Hao, Y., Cao, J., Wang, Q., and Ma, T. Energy-aware of-
floading based on priority in mobile cloud computing. Sustain-
able Computing: Informatics and Systems 31 (Sept. 2021),
100563.

[17] Jiang, H., Dai, X., Xiao, Z., and Iyengar, A. Joint Task
Offloading and Resource Allocation for Energy-Constrained
Mobile Edge Computing. IEEE Transactions on Mobile
Computing 22, 7 (July 2023), 4000–4015. Conference Name:
IEEE Transactions on Mobile Computing.

[18] Kanupriya, Chana, I., and Goyal, R. K. Com-
putation offloading techniques in edge computing:
A systematic review based on energy, QoS and au-
thentication. Concurrency and Computation: Prac-
tice and Experience 36, 13 (2024), e8050. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.8050.

[19] Kochenderfer, M. J., and Wheeler, T. A. Algorithms for
Optimization. MIT Press, 2019.

[20] Lu, J., Hao, Y., Wu, K., Chen, Y., and Wang, Q. Dynamic
offloading for energy-aware scheduling in a mobile cloud. Jour-
nal of King Saud University - Computer and Information
Sciences 34, 6, Part B (June 2022), 3167–3177.

[21] Meisner, D., Gold, B. T., and Wenisch, T. F. Power-
Nap: eliminating server idle power. In Proceedings of the
14th international conference on Architectural support for
programming languages and operating systems (New York,
NY, USA, 2009), ASPLOS XIV, Association for Computing
Machinery, pp. 205–216.

[22] Nabi, A., and Moh, S. Offloading decision and resource alloca-
tion in aerial computing: A comprehensive survey. Computer
Science Review 56 (May 2025), 100734.

[23] Neely, M. J. Stochastic Network Optimization with Appli-
cation to Communication and Queueing Systems. Synthesis
Lectures on Learning, Networks, and Algorithms. Springer
International Publishing, Cham, 2010.

[24] Patel, Y. S., Reddy, M., and Misra, R. Energy and cost
trade-off for computational tasks offloading in mobile multi-
tenant clouds. Cluster Computing 24, 3 (Sept. 2021), 1793–
1824.

[25] Qin, P., Fu, Y., Tang, G., Zhao, X., and Geng, S. Learning
Based Energy Efficient Task Offloading for Vehicular Collab-
orative Edge Computing. IEEE Transactions on Vehicular
Technology 71, 8 (Aug. 2022), 8398–8413. Conference Name:
IEEE Transactions on Vehicular Technology.

[26] Raeisi-Varzaneh, M., Dakkak, O., Habbal, A., and Kim,
B.-S. Resource Scheduling in Edge Computing: Architec-
ture, Taxonomy, Open Issues and Future Research Directions.
IEEE Access 11 (2023), 25329–25350. Conference Name:
IEEE Access.

[27] Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. Edge
Computing: Vision and Challenges. IEEE Internet of Things
Journal 3, 5 (Oct. 2016), 637–646.

[28] Tan, L., Kuang, Z., Zhao, L., and Liu, A. Energy-Efficient
Joint Task Offloading and Resource Allocation in OFDMA-
Based Collaborative Edge Computing. IEEE Transactions
on Wireless Communications 21, 3 (Mar. 2022), 1960–1972.
Conference Name: IEEE Transactions on Wireless Communi-
cations.

[29] Teng, M., Li, X., and Zhu, K. Joint Optimization of Sequen-
tial Task Offloading and Service Deployment in End-Edge-
Cloud System for Energy Efficiency. IEEE Transactions on
Sustainable Computing 9, 3 (May 2024), 283–298. Conference
Name: IEEE Transactions on Sustainable Computing.

[30] Wu, H., Wolter, K., Jiao, P., Deng, Y., Zhao, Y., and Xu,
M. EEDTO: An Energy-Efficient Dynamic Task Offloading
Algorithm for Blockchain-Enabled IoT-Edge-Cloud Orches-
trated Computing. IEEE Internet of Things Journal 8, 4
(Feb. 2021), 2163–2176. Conference Name: IEEE Internet of
Things Journal.

[31] Yuan, H., and Zhou, M. Profit-Maximized Collaborative
Computation Offloading and Resource Allocation in Dis-
tributed Cloud and Edge Computing Systems. IEEE Trans-
actions on Automation Science and Engineering 18, 3 (July
2021), 1277–1287.

[32] Zabihi, Z., Eftekhari Moghadam, A. M., and Rezvani,
M. H. Reinforcement Learning Methods for Computation
Offloading: A Systematic Review. ACM Comput. Surv. 56, 1
(Aug. 2023), 17:1–17:41.

[33] Zhang, S., Yi, N., and Ma, Y. A Survey of Computation Of-
floading With Task Types. IEEE Transactions on Intelligent
Transportation Systems 25, 8 (Aug. 2024), 8313–8333. Confer-
ence Name: IEEE Transactions on Intelligent Transportation
Systems.

13


	Introduction
	Related Work
	System Model
	Methodology
	AIP
	Conferences
	Research Libraries
	Inclusion Criteria

	Offloading Layer
	Offloading to the Cloud
	Offloading to the Edge
	Offloading to other Endpoints

	Offloading Strategies
	Heuristics and Policies
	Optimization Algorithms
	Machine learning-based approaches

	Research Deficits, Challenges, and Opportunities
	Conclusion

