
Vrije Universiteit Amsterdam

Master Thesis

BenchFrame: A Framework for
Benchmarking Power Monitoring Tools

Author: Thimo Wuttge (2829081)

1st supervisor: Tiziano De Matteis
daily supervisor: Matthijs Jansen
2nd reader: Daniele Bonetta

A thesis submitted in fulfillment of the requirements for
the VU Master of Science degree in Computer Science

August 18, 2025

ii

Abstract

The energy consumption of data centers has become an increasingly important

issue in recent years, driven by the growth of cloud computing, global connec-

tivity, machine learning, and other data-intensive applications. To keep data

and services available around the clock, data centers operate continuously –

this can introduce significant energy consumption. Monitoring and optimizing

their energy usage is essential not only for reducing operational costs but also

for addressing environmental concerns, as energy is not always generated in a

sustainable or resource-efficient manner.

This research project contributes to improving energy efficiency in data centers

by investigating methods to monitor the power consumption of servers. A

single data center may house thousands of servers, each contributing to the

total energy footprint. As such, optimization efforts must begin at the server

level.

To address this concern, we design and implement BenchFrame, a power bench-

marking framework. We survey different power monitoring techniques and

benchmarking approaches during the design phase. Afterwards, we realize the

design by implementing BenchFrame. We assess the selection of power mon-

itoring tools by executing various benchmark experiments on the framework

and conduct an in-depth analysis on the monitoring tools.

Through a comprehensive analysis of the collected data, we find that software

tools typically offer more fine-grained monitoring capabilities, whereas hard-

ware tools provide more stable and consistent readings. Additionally, internal

tools often measure only a subset of system components, limiting their ability

to capture total system energy consumption. This allows an analysis of system

components, but limits the analysis of the whole system.

Contents

1 Introduction 1

1.1 Problem Statements . 2

1.2 Research Questions . 4

1.3 Research Methodology . 5

1.4 Thesis Contributions . 6

1.5 Plagiarism Declaration . 7

1.6 Thesis Structure . 8

2 Background 9

2.1 External Power Management . 9

2.2 Internal Power Management . 9

3 Design of a Power-Benchmarking Framework 11

3.1 Power-Benchmarking Framework . 11

3.1.1 Design Requirements . 11

3.1.2 Design Concept . 12

3.2 Monitoring Metrics . 14

3.2.1 Requirements . 15

3.2.2 Tool Selection . 16

3.3 Benchmarking Tools . 19

3.3.1 System Components . 19

3.3.2 Requirements . 19

3.3.3 Tool Selection . 20

4 BenchFrame – Power-Benchmarking Framework 23

4.1 Orchestration Process . 23

4.2 Monitoring Process . 24

4.3 Benchmark Scripts . 28

i

CONTENTS

5 Benchmark Design 33

5.1 Evaluation Objectives . 33

5.2 Experiment Design . 34

5.2.1 CPU Benchmarks . 35

5.2.2 Memory Benchmarks . 35

5.2.3 Network Benchmarks . 36

5.2.4 Storage Benchmarks . 36

5.2.5 Tool Benchmarks . 37

5.3 System Setup . 37

5.4 Benchmark Methodology . 38

6 Evaluation 41

6.1 Static Evaluation . 41

6.2 Component Workload Evaluation . 42

6.3 Usability Evaluation . 48

6.4 Conclusion . 51

7 Related Work 53

7.1 Power Monitoring Tools . 53

7.2 Benchmarking . 54

8 Conclusion 55

8.1 Answering Research Questions . 55

8.2 Threats to Validity . 56

8.3 Future Work . 57

References 59

A Reproducibility 63

A.1 Artifact check-list (meta-information) . 63

A.2 Description . 64

A.2.1 How to access . 64

A.2.2 Hardware dependencies . 64

A.2.3 Software dependencies . 64

A.3 Installation . 65

A.4 Experiment workflow . 65

A.5 Evaluation and expected results . 65

ii

CONTENTS

A.6 Experiment customization . 65

B Benchmark Suite 67

C Additional Experiments 69

D Measurement Results 71

iii

Acronyms

ACPI Advanced Configuration and Power Interface. 18

BMC Baseboard Management Controller. 17, 26, 27

IPMI Intelligent Platform Management Interface. 16, 17, 26

NIC Network Interface Controller. 33, 36

PCH Platform Controller Hub. 17

PDU Power Distribution Unit. 9, 17, 18, 27, 28, 37

PSU Power Supply Unit. 9, 17

RAPL Intel® Running Average Power Limit. 16, 18, 24, 25, 41, 44, 45, 47–51, 53, 54,

63, 64, 71

SUT System Under Test. 37

UPS Uninterruptible Power System. 9

v

1

Introduction

Throughout the last decades, the importance of computers in private as well as professional

work environments grew to a point where almost 70 % of the world’s population use the

internet through a device at the start of 2025.(1) This transformation in human behavior

was made possible by inventing powerful technologies. One of these technologies, that

grew in particular popularity throughout the last years, is the cloud. As of 2023 95% of

companies in Europe stated, that they use cloud resources in their everyday business.(2)

Hereby the range of available functionalities provided by the cloud ranges from storing data

in cloud storage like Google Drive, iCloud, etc., to running complete IT infrastructures in

a cloud environment. The cloud services require high computation and storage resources,

which are provided by multiple connected data centers. The servers in these data centers

do not only require scarce materials but also run with high electricity demands. Therefore,

several energy saving techniques try to optimize the efficiency of the servers to contribute

to a lower energy consumption of the whole data center.

The high energy consumption does not only result in additional costs for the provider but

also harm the environment.(3) Therefore, energy saving techniques contribute to a better

monetary as well as environmental outcome for the providers. Additionally, more and more

regulations are being established that require the data center maintainers to provide energy

usage reports and limit their energy consumption to meet certain legal restrictions.(4)

Therefore, a comprehensive energy consumption analysis is not only beneficial for the

maintainers but necessary to ensure a sustainable and environment-friendly future for

all beings. To analyze different energy saving strategies, the energy consumption of the

servers must be monitored and evaluated. For this purpose, power measuring tools can

be integrated. The providers can choose from various options depending on factors like

accuracy, complexity, and many more. The list of available options is long and every

1

1. INTRODUCTION

datacenter maintainer has different requirements. Integrating power monitoring tools in a

data center can, therefore, become a complex task, where the selection of the meter itself

represents a fundamental challenge.

To understand the advantages and disadvantages of different power monitoring tools,

they must be analyzed under various workloads. Each tool may respond differently and

can be more sensitive to varying tasks. The workloads a server has to process may stress

different parts of the system. Every server component contributes to the total energy

consumption in a certain degree. Therefore, it is not only necessary to monitor the to-

tal power draw, but additionally, to analyze the amount of energy a component-specific

workload requires. This approach enables a comprehensive picture of the system’s energy

behavior.

1.1 Problem Statements

To optimize the energy consumption of a data center, the power behavior of servers must

be monitored and evaluated. Numerous approaches allow the server maintainer to monitor

and analyze various metrics. Depending on their specification, the provided metrics can

vary in multiple factors like granularity, accuracy, or many more. Each system comes

with preinstalled tools, but different vendors also provide various extensions that can be

included in the system. This vast landscape of monitoring tools can make the decision of

the most suitable tool complex.

Therefore, analyzing power monitoring tools and the energy consumption of servers is

a complex task. For this purpose, we establish a power benchmarking framework, which

provides insights in the energy consumption of servers and different motioning techniques.

By executing benchmark experiments, we can evaluate each power monitoring tool under

various conditions and investigate the power behavior of the server and how the tools

monitor it. This benchmark-based evaluation allows us to draw conclusions about different

aspects of the tools. These conclusion allow server maintainers and researchers to better

understand how current power monitoring tools work and which benefits they provide.

To design and engineer a power benchmarking framework, we need to address three main

problems. First, the current landscape of tools must be assessed. This assessment is based

on information provided by the vendors or other researchers and does not include an exper-

imental investigation. A second investigation is necessary to gain an understanding how

sensitive the tools are to various conditions and workloads. To execute this second assess-

ment, we utilize micro-benchmark tools. Therefore, we need to establish an understanding

2

1.1 Problem Statements

of how benchmark tools work, which tools are necessary to provide a comprehensive sys-

tem analysis, and how we can combine the benchmark tools, the monitoring tools, and

the tools assessment in one process. After the theoretical analysis of the monitoring tools

and the planing, design and implementation of a benchmarking framework, the experi-

mental investigation of the tools can take place. Hereby, the monitoring results need to

be analyzed and compared. The main challenge is to establish and design a meaningful

evaluation process.

P-1 How can we evaluate the energy consumption of servers?

To optimize the energy consumption of data centers, first, the power of the servers

must be monitored. This is a fundamental step in understanding the behavior of the

servers under different workloads. The range of tools for this purpose is vast and

understanding the differences of the tools is an important first step. The tools can

vary significantly in regard of multiple factors like accuracy or data granularity. Each

tool also provides different interfaces to access their results. Therefore, to choose the

correct power monitoring tools, available options must be assessed and the most

suitable option selected.

P-2 How should a monitoring framework be designed and implemented?

After a set of tools is selected, their behavior and accuracy must be assessed. For

this purpose, we use benchmarking tools. These tools enable the user to stress a

specific component of the server by executing a task extensively. Using this approach,

common server workloads can be simulated. The range of benchmarking tools is

nearly endless with various use-cases for each single tool. To decide on a applicable

set of benchmarking tools, user requirements must be analyzed and a decision on the

most appropriate tools taken. After a set of tools is selected, the correct orchestration

of benchmark testing and power measuring need to be executed. Hereby certain

design requirements must be met and a correct execution established.

P-3 How can the different power monitoring techniques be assessed and analyzed?

After a selection of power monitoring tools and benchmark test is taken, and a

framework to orchestrate the correct execution is established, the experiments can

be carried out. Subsequently, the collected data must be analyzed and evaluated.

Hereby observations about the power monitoring tools and the server itself should

provider deeper insights into the behavior of the energy consumption under different

conditions. To achieve this, an exploratory analysis of this data is required and the

correct statistical analysis be applied.

3

1. INTRODUCTION

1.2 Research Questions

Based on the problem statements we formulate three research questions. These research

questions address the fundamental challenges of this research project. These are the correct

selection of power monitoring tools, how we tested their behavior using benchmark tests,

and how we evaluated the results.

RQ-1 Which techniques and tools are available to monitor server energy consumption and

how do they differ?

To analyze the energy consumption of servers, numerous tools can be utilized. These

tools can vary based on multiple characteristics and factors. The first step in investigat-

ing these tools is to find categories to sort these tools and highlight differences of each

category:

RQ-1.1 What tools exist, how can they be classified, and what are their character-

istics?

Furthermore, we want to analyze how we can use these tools and what kind of information

is provided. For this purpose, we will look at the scope and the monitoring results of

these categories in more detail. This will help us during the tool decision process and

the analysis of the experiment results:

RQ-1.2 How can we utilize the monitoring tools, how are the monitoring results

provided, and how can we extract them?

After the power monitoring tools are assessed, a final selection of tools must be decided

on. For this purpose, various requirement need to be established so that the selection

satisfy them:

RQ-1.3 How can we select a comprehensive set of tools and which requirements

should they satisfy?

RQ-2 How can power monitoring tools be evaluated?

To get a better understanding of power monitoring tools, we want to assess them under

various conditions. To this end, different components of the server should be stressed

with common tasks. For this purpose, we first need to evaluate which categories of server

tasks exist and what components are relevant for these tasks:

RQ-2.1 Which tasks must a server process and which components are involved?

After a categorization is established, a selection of benchmarking tools for each purpose

should be established. Hereby, various selection requirements must be chosen and we

need to ensure they are satisfied by the selected benchmarking tools:

4

1.3 Research Methodology

RQ-2.2 Which selection requirements should be used and which tool selection satis-

fies these?

To finally assess the power monitoring tools and the energy consumption of the server,

we need to design and implement a framework which orchestrates the correct execution

of benchmarking, monitoring, and data processing. For this purpose we need to define

design requirements and create a implementation that satisfies these requirements:

RQ-2.3 Which requirement need to be met by a benchmarking framework?

RQ-3 How do different workloads influence the overall system’s energy consumption, and

to what extent can power monitoring tools capture this behavior?

The final step to analyze the energy consumption of power monitoring tools is to execute

the experiments and evaluate the resulting data sets. First, we need to establish a

concrete plan on how we want to execute the experiments, what our hypotheses are, and

how we address these in our experiments:

RQ-3.1 How can we design, execute and interpret the benchmark experiments?

Subsequently, the experiments can be executed and the results analyzed. The experi-

ments should provide deeper insights into two research gaps. We want to analyze and

address the behavior of the server itself. For this purpose, we address wether the energy

consumption of the server behave according to the task executed:

RQ-3.2 How does the server’s energy consumption change under various tasks?

Additionally, we want to use these results to verify wether the power monitoring tools

analyzed the energy consumption in the correct way. To do so, we compare the result

from the tools and evaluate their monitoring results based on various criteria:

RQ-3.3 How can the power monitoring tools be evaluated based on the benchmarking

results?

1.3 Research Methodology

To answer the research question, we apply various techniques. These range from reference-

based research to practical experiments:

M-1 Through a quantitative survey of current research advances, we are able to

assess the state of current research in a specific domain. We use this methodology to

evaluate technologies and tools, and decide on a selection that fits our purpose. To

achieve this, we first specify distinctive categories that the technologies fall into. Af-

terwards, we can establish requirements which need to be satisfied by the technology

5

1. INTRODUCTION

in question. Subsequently, we can make a comprehensive selection of technologies for

the purpose of our research question. This approach allows us to decide on a selection

of technologies and tools relevant for power monitoring as well as benchmark testing.

M-2 We use an workflow design approach to include various technologies in our bench-

marking framework. We use a requirement-based design approach inspired by Pohl

et al.(5). We first establish functional and quality requirements and ensure that our

design decisions align with these requirements. Hereby, the workflow execution al-

ways follows the same sequence:

Begin monitoring – Run experiment – Stop monitoring and evaluate results

Additionally, we include a plug-in strategy that allows us to easily add and remove

technologies and tools. This design approach allows us to assess multiple technologies

and evaluate the system under various conditions. For the purpose of this design

strategy, we first establish requirements and then design a suitable system.

M-3 With the help of benchmarks experiments we realize our research design. Hereby,

we include two different kind of benchmark experiments:

• Through component-workload benchmarks we can evaluate the influence of

workloads focused to stress a certain server component on the energy consump-

tion and how this behavior is recorded by the monitoring tools.

• Behavioral benchmarks allow us to further investigate the functionality of tools.

This allows us to analyze and proof theory-based assumptions. These benchmarks

allow us to address research questions and compare various technologies under the

same system conditions. For the selection of the benchmark test we analyze the

different components we want to evaluate. Afterwards, we select various tools to

execute the tests and stress the system components. This selection is based on

requirements which we establish beforehand.

1.4 Thesis Contributions

C-1 Classification and assessment of current power monitoring tools

Based on a research review, we provide an overview of various power monitoring

6

1.5 Plagiarism Declaration

technologies and approaches how the energy consumption of servers can be moni-

tored and evaluated. We explore different options how the energy consumption of

server can be monitored and establish a classification of these options. By doing so,

we highlight various advantages and restrictions these technologies. To further in-

vestigate the different ways to monitor the energy consumption of servers, we choose

a representative tools to cover each option in our classification and further inspect it

through benchmark experiments.

C-2 A benchmarking framework that enables reproducible power monitoring experiments

Through the analysis of various benchmarking tools and the design of a benchmark-

ing and implementation of a benchmarking framework, we provide an instrument

for testing power monitoring tools. This framework orchestrates the execution of

benchmark tests while measuring numerous metrics via power monitoring tools. The

framework is used to inspect different power monitoring tools under various condi-

tions and analyze their behavior.

C-3 Evaluation of the energy consumption of servers and assessment of power monitoring

tools based on various criteria

With the evaluation of the data provided by the different benchmark experiments,

we provide insights into the behavior of a server’s energy consumption under vari-

ous conditions. Through these experiments we can analyze the influence of different

component-specific workloads on the system. Hereby we focus on the CPU, memory,

storage, and networking. Additionally, we evaluate the power monitoring tools by

comparing their results and assessing them based on various criteria. In this anal-

ysis we investigate the different behavior of the tools, and highlight differences in

granularity, stability and latency of the different tools.

1.5 Plagiarism Declaration

I confirm that this thesis work is my own work, is not copied from any other source (person,

Internet, or machine), and has not been submitted elsewhere for assessment.

To understand more about plagiarism policy at VU Amsterdam, see https://vu.nl/en/about-

vu/more-about/academic-integrity.

7

1. INTRODUCTION

1.6 Thesis Structure

The rest of this thesis is structure as follows: Section 2 provides additional information

about the background of power management in data centers. In Section 3, we discuss

the design requirements and the resulting design decisions of the power-benchmarking

framework. In Section 4, we introduce the implementation of BenchFrame, the power

benchmarking framework and how the benchmark experiments are executed. In Section

5, we present how we designed the benchmark experiments. Section 6 presents the results

and evaluates them. We provide observations taken from these results. In Section 7, we

compare our experiment and the results to related research. In Section 8, we summarize

our findings in the Conclusion.

8

2

Background

Data centers can be considered computational warehouses, which include all necessary

resources for cloud services to run. They consist of many server racks, each of which holds

multiple compute nodes. To power this whole infrastructure, data centers require complex

power infrastructure.

2.1 External Power Management

A fundamental control mechanism is the Uninterruptible Power System (UPS). This system

enables a constant power supply for the data center by performing three main tasks. First,

it switches between different power sources to always provide the most suitable power,

depending on demand and supply shortages. Second, it handles different forms of energy

storage, which can be used during low-supply phases. Third, it evens out the incoming

energy to avoid voltage spikes or sags.

The next system in the power management of the data center is the set of Power Dis-

tribution Units (PDUs). These units distribute power between the different racks and

provide constant power to each node. We can consider everything up to this point as

external power management. From here onward, the compute node manages the power

distribution to its internal components.(6)

2.2 Internal Power Management

Internal power management begins as soon as the power enters the compute node. Each

node is equipped with at least one Power Supply Unit (PSU). This component distributes

power between the different components in the node. Components can be divided into

9

2. BACKGROUND

two categories: Non-IT power encompasses all components that do not directly provide

computational resources for the system. Classic examples of this are cooling systems or

LEDs. IT power, on the other hand, includes all compute resources such as the mother-

board, storage components, or networking devices. Both categories influence the energy

consumption of the compute node to a certain degree. Additionally, it is only possible to

measure the direct relationship between IT power components and energy consumption,

as the state and utilization of non-IT power components are often not provided.(7)

10

3

Design of a Power-Benchmarking
Framework

To monitor and evaluate the energy consumption of a server, we design and implement a

benchmarking framework. The first part of the design focuses on the high level structure

of the framework. This includes planning the orchestration of benchmark task executions,

monitoring, as well as handling the monitoring results. Afterwards, we select a set of

monitoring tools by establishing a categorization of monitoring techniques and ensuring

that each category is covered by at least one tool. By including multiple monitoring

tools, we can cross-validate measurements, compare tool-specific characteristics such as

accuracy, granularity, and stability, and ensure broader coverage of system components and

measurement methodologies. In the final design step, we address the benchmarking tools.

In this step, the tool requirements, the tool selection, and the design of the benchmark

tasks takes place. In the last step we design the benchmarking framework.

3.1 Power-Benchmarking Framework

The first design step for the benchmarking framework is to establish requirements for the

framework architecture. First, we establish the design requirements and, then, present how

we integrate these requirements in our system design.

3.1.1 Design Requirements

To establish requirements for the benchmarking framework, we focus on technical limita-

tions, as well as user restrictions, which must be fulfilled by the final design. Therefore,

11

3. DESIGN OF A POWER-BENCHMARKING FRAMEWORK

we follow the design approach of Pohl et al.(5) and divide the list of requirements into

functional and quality requirements:

F-Req-1: Portability

To make the benchmark experiments executable on multiple systems, the

framework needs to be independent of any system-specific configurations.

F-Req-2: Extensibility

The framework should be easily extensible, so that new benchmark tests can

be added or adjusted.

F-Req-3: Integrity

To ensure that the monitored and recorded power data is not adjusted or

tampered, we need the framework to store the raw data without any processing

steps.

Q-Req-1: Usability

The framework should be easy to install and ready to use without extensive

setup.

Q-Req-2: Consistency

The framework should behave consistently and perform identically across re-

peated executions.

3.1.2 Design Concept

An overview of the final framework design can be seen in Figure 3.1. The execution of

the framework is split up into three distinct processes. The main orchestration process

orchestrates the execution of the total framework. First, it loads system specific configu-

rations 1○. This step is necessary to satisfy F-Req-1. Afterwards, a benchmark test is

loaded from the benchmark repository 2○. This repository holds all benchmark tests and

can easily be extended to align with F-Req-2. Next, the monitoring process can be started

3○. This process reads the data collected by the different monitoring tools 4○ and writes

the raw values to a results repository 5○. This specification satisfies F-Req-3. After

this process is started, the main orchestration process executes the loaded benchmark

test in a decoupled third process and waits 6○. After the benchmark process finishes, the

measurement process is stopped. At this point, one benchmark test iteration is finished

12

3.1 Power-Benchmarking Framework

Orchestration process

Collect test script

Start benchmark

Execute monitoring
process Monitoring process

Start monitoring

/benchmark

Read and save
monitoring data /results

Stop monitoring

Yes

No

Scripts left?

Stop benchmark

2

Load configuration
Configuration

1

4 5

3

Execute script
process

6

Figure 3.1: Control flow of the benchmarking framework.

and the benchmark framework either continues by loading the next benchmark test or

finishes the execution.

To ensure the usability requirements are met, only the orchestration process needs to

be started. This process then oversees the correct execution of the framework. Therefore,

only the necessary power monitoring tools need to be configured. Furthermore, by dividing

the framework into three processes, we can ensure that each one of these runs on their own

and does not interfere with the other. This allows the framework a consistent execution

over multiple runs.

13

3. DESIGN OF A POWER-BENCHMARKING FRAMEWORK

3.2 Monitoring Metrics

Various power monitoring tools are provided by vendors, component producers and re-

searchers. To analyze differences in these tools, we establish a categorization and select a

representative tool to cover each option in the categories.

We base our categories on a taxonomy established by Lin et al.(8). They distinguish

four different monitoring approaches, which are:

• Instruments-based tools

• System-based tools

• Software tools

• Simulations

As this research projects focuses on implemented solutions, we exclude simulations in our

tool assessment. Therefore, we focus on the first three tool categories.

To identify differences of these categories, we distinguish three tool characteristics, as

presented in Figure 3.2. These are the implementation method, the monitoring scope, and

the integration. While there can be multiple other properties and features in which the

tools may differ, we focus on fundamental attributes which influence the quality and scope

of the power readings.

The implementation method can include software-based and hardware-based tools. Software-

based tools comprise all tools which only use software-based models to estimate the power

consumption, whereas hardware-based tools are only using hardware meters. The sec-

ond distinction we make is the scope of the tools. We differentiate between system- and

component-scoped monitoring. Component-scoped monitoring tools only monitor the en-

ergy consumption of certain components of the system, like the CPU or the RAM. This

distinction is especially relevant during the evaluation of the monitoring, since component-

scoped tools only include monitor a fraction of the total system. Lastly, the tools can be

integrated in different ways into the system. Hereby, we distinguish between internal and

external tools. External tools are not part of the system and extract information from

the system without interfering with its execution. Internal tools may also be additionally

added but are part of the system.

14

3.2 Monitoring Metrics

Power Monitoring
Tools

Implementation
Method

Monitoring
Scope Tool Integration

Figure 3.2: Categorization of different monitoring tools.

3.2.1 Requirements

To establish a selection of relevant power monitoring tools, we decided on several require-

ments based on technical feasibility, research relevance, and reproducibility. These require-

ments were derived from the research questions of this study — namely, to analyze tools

and their behavior under different workloads, and to create a benchmarking framework

that can be reused in other research settings.

These requirements are:

Req-1: Coverage

To assess the different approaches of each category, we establish a set of power

measurement tools. Hereby, the selection of tools need to cover all options of the

categories presented in Section 3.2. This requirement allows us to make observa-

tions about specific power monitoring tool categories. Therefore, further research

project can use our insights to draw conclusions about other tools belonging to a

specific tool category.

Req-2: Data origin

We require the tools to be the origin monitoring source. By doing so, we avoid

added abstraction layers, which allows us to better understand the origin of the

monitored data. Furthermore, this enables us to make the outcome of this research

project more transparent, so that other researchers can build on top of our results.

Req-3: Setup

We exclude tools with extensive hardware or software setup to support repro-

ducibility of our experiments. Hereby, other research projects can easily execute

our benchmarking framework on their systems, without extensive setup before-

hand. By including this requirement, we can ensure reproducibility of our exper-

15

3. DESIGN OF A POWER-BENCHMARKING FRAMEWORK

Name Implementation Scope Integration

Intel® RAPL Software CPU and RAM Internal
IPMI/Redfish Hardware System Internal
Netio PowerPDU 4KS Hardware System External

Table 3.1: Overview of employed power monitoring tools.

iment and it enables other researchers to run the framework with ease.

Req-4: Interface

The tool must provide a command-line interface to allow seamless integration

into the benchmarking framework. This requirement ensures that the tool can be

programmatically controlled, enabling automated execution and consistent mea-

surement runs without manual intervention. Since the benchmarking framework

is designed to orchestrate experiments end-to-end, tools that rely solely on graph-

ical user interfaces or manual input would disrupt reproducibility and introduce

unnecessary overhead.

3.2.2 Tool Selection

With these requirements, we decide on three monitoring tools to include in BenchFrame.

These are Intel® Running Average Power Limit (RAPL), Intelligent Platform Management

Interface (IPMI)/Redfish, and Netio 4KS. An overview of the selected monitoring tools can

be seen in Table 3.1. Hereby, one can already see that this selection satisfies Req-1, as we

have a representative tool for each category option.

RAPL:

RAPL is a software-based power monitoring tool implemented and maintained by Intel®.

It is included in all systems running the x86 architecture or the extension x86-64. RAPL

provides power metrics per CPU and its dedicated RAM. As it is included via the processor

architecture, it is a native monitoring tool and, therefore, satisfies Req-2. Additionally, it

is integrated by default and needs no setting up, which satisfies Req-3. Req-4 is achieved

on Linux through the Power Capping framework(9), and on Windows and macOS via the

Intel® Power Gadget API. (10)

16

3.2 Monitoring Metrics

CPU

PCH

RAM

SATA LAN USB

BMC

Figure 3.3: System block diagram explaining the BMC.

IPMI/Redfish:

The second tool we include in our analysis is IPMI, as well as it’s newer implementa-

tion Redfish. These tool represent the interface to the BMC. The BMC is an additional

hardware component which is installed on the motherboard of the system. Their purpose

is to allow maintenance without accessing the server itself. Additionally, the user can

read various information from this chip. We utilize this technology to read power usage

data.(11) The BMC is connect to the Platform Controller Hub (PCH) and reads all values

through this connection. A simplified overview of the motherboard architecture can be

seen in Figure 3.3. This architecture makes this an integrated hardware component of the

system. Since this controller only provides data though the interface IPMI or Redfish, we

use the native data source and, therefore, satisfy Req-2. The chip comes preinstalled with

the motherboard and only the tools need to be installed. This aligns with Req-3. Both

interfaces can be accessed via the command line and satisfy Req-4.

Netio PowerPDU 4KS:

The last power monitoring tool we include is a physical PDU which measures the power

draw between the PSU and the electrical socket, as can be seen in Figure 3.4. Therefore,

this makes this power monitoring tool and external, hardware tool. It measures the whole

system power draw. It provides the measured power draw via an Ethernet connection,

which makes the data easily accessible through an endpoint. This satisfies Req-2 and

Req-4. The physical setup requires the power cables from the PSU to be plugged into

the PDU and a physical network connection to the local area network must be established.

17

3. DESIGN OF A POWER-BENCHMARKING FRAMEWORK

⚡️

SERVER PDU POWER
SUPPLY

Figure 3.4: Power supply including the PowerPDU.

The PDU must be assigned to a static IP address. As this setup does not vary much with

other external power monitoring tools, this aligns with Req-3.

Additional to the selection of tools, we further assessed different other power monitoring

tools. An overview of all omitted internal tools, as well as the reason why we did not

include them can be seen in Table 3.2. In this table, one can see that RAPL often provides

the raw data which is further analyzed by other tools, which does not align with Req-2

as we only consider tools which provide data directly without additional data processing.

Furthermore, do other investigated tools like Advanced Configuration and Power Interface

(ACPI) or PowerSensor3 require complex setup or specific requirements.

Name Req-2 Req-3 Req-4

Scaphandre Based on RAPL ✓ ✓

PowerJoular Based on RAPL ✓ ✓

CPU Energy Meter Based on RAPL ✓ ✓

turbostat Based on RAPL ✓ ✓

powerstat Based on RAPL ✓ ✓

Perf Based on RAPL ✓ ✓
Intel® Performance
Counter Monitor

Based on RAPL ✓ ✓

ACPI ✓
Only possible with

battery powered systems ✓

PowerSensor3 ✓
Complex setup with

hardware components ✓

Open Hardware Monitor Based on RAPL ✓ ×

Table 3.2: List of omitted power monitoring tools.

18

3.3 Benchmarking Tools

3.3 Benchmarking Tools

To analyze the power monitoring technologies under different conditions, we employ a set

of benchmarking tools. First, we identify the system components that should be stressed

during testing. Based on this, we define a set of requirements that suitable benchmarking

tools must fulfill in order to be integrated into our framework and provide meaningful

workloads. Finally, we present the selected tools that meet these criteria and are used

throughout the evaluation.

3.3.1 System Components

We focus on four system components which are fundamental resource providers for a server.

This list is derived from Ahmed et al. (12). In their publication the energy consumption

is split up into five components, as presented in Formula 3.1.

PServer = Pbase + PCPU + Pdisk + Pnet + Pmem (3.1)

Where:

PServer: is the total server power draw.

Pbase: is the idle power draw.

PCPU : is the CPU’s power draw.

Pdisk: is the storage power draw.

Pnet: is the network interface power draw.

Pmem: is the memory power draw.

We relate our classification to this model and, therefore, split the benchmark tool selection

into these four categories:

CPU – Memory – Network – Storage

3.3.2 Requirements

Given the large number of available benchmarking tools, a selection process is necessary. To

guide this process, we define a set of requirements that candidate tools must fulfill. These

requirements are derived from several factors: the architectural design of the benchmarking

framework described in Section 3.1, the selected system components we want to execute

benchmark experiments on, and the intended method of integration and interaction with

19

3. DESIGN OF A POWER-BENCHMARKING FRAMEWORK

the tools. The goal is to ensure compatibility, flexibility, and reproducibility within our

framework. Based on these considerations, we define the following requirements:

Req-1: Coverage

The set of tools must be able to execute stress benchmarks on the different com-

ponents established in Section 3.3.1.

Req-2: Adjustability

To execute different benchmark experiments on the same component, the tool

should be adjustable in regards of workload and execution time.

Req-3: Interface

To be able to integrate the tool into the benchmarking framework, it must be

accessible via the command line. Additionally, tools with graphical user interfaces

(GUIs) are excluded, as they introduce unnecessary overhead and could interfere

with the results.

Req-4: Accessibility

The tool should be openly accessible and free to use, to ensure that the bench-

marking framework is easily reproducible in other research projects.

3.3.3 Tool Selection

We selected three benchmarking tools that collectively cover all system components out-

lined in Section 3.3.1, thereby fulfilling Req-1. The selected tools are listed in Table 3.3,

along with the components they target. Additionally, the table includes excluded tools and

the reasons for their omission. These selected tools form the basis for the implementation of

the benchmarking experiment in our framework. As shown in the table, the tool selection

addresses all relevant components targeted in our benchmark experiments. Moreover, all

selected tools allow configurable benchmark execution, can be operated via the command

line, and are freely available for use.
1https://github.com/ColinIanKing/stress-ng
2https://github.com/esnet/iperf
3https://github.com/axboe/fio
4https://www.spec.org/
5https://www.passmark.com/products/pt_linux/index.php
6https://github.com/akopytov/sysbench
7https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-

checker.html
8https://github.com/stressapptest/stressapptest
9https://www.userbenchmark.com/Software

20

3.3 Benchmarking Tools

Benchmarking
Tool

Component Req-2 Req-3 Req-4

stress-ng1 CPU, Memory ✓ ✓ ✓

iperf32 Networking ✓ ✓ ✓

fio3 Storage ✓ ✓ ✓

SPEC4 CPU, Storage Only fixed set ✓ Paid
PassMark Perfor-
mance Test5

CPU, Memory Not adjustable ✓ ✓

sysbench6 CPU, Memory, Storage Not adjustable ✓ ✓

Intel® Memory
Latency Checker7

Memory Not adjustable ✓ ✓

stressapptest8 Memory Predefined ✓ ✓

PC
UserBenchmark9

CPU, Memory, Storage Not adjustable Not CLI ✓

Table 3.3: List of included benchmarking tools.

21

4

BenchFrame – Power-Benchmarking
Framework

This section presents the implementation of BenchFrame1, the power benchmarking frame-

work described in Section 3. An overview of the framework’s components is shown in

Figure 4.1.

The goal of this section is to provide insight into the internal structure and technical

decisions behind BenchFrame. Understanding the implementation is essential for assessing

the reliability of the results, comparing the results to other research projects, and extending

the framework for future use.

We begin by presenting the orchestration process, which manages the coordinated execu-

tion of the framework. Next, we introduce the monitoring process and highlight implemen-

tation details about the monitoring tools and the /results directory. Finally, we describe

the implementation of the benchmarking experiments, covering both the execution logic

and the individual scripts located in the /benchmark directory.

4.1 Orchestration Process

The orchestration process, realized as a python project, is divided into three steps. First,

the monitoring process is started. In this step, all required resources are initialized, and the

readings provided by the monitoring tools are collected and stored. Next, the benchmarking

scripts can be executed. To ensure an undisturbed execution of the first two steps, both

the monitoring and the script execution are run in subprocesses. After the script execution

is completed, the monitoring process is terminated. At this point, all monitoring-specific
1The source code is available on GitHub: https://github.com/THWU0412/BenchFrame.

23

https://github.com/THWU0412/BenchFrame

4. BENCHFRAME – POWER-BENCHMARKING FRAMEWORK

Framework components

Orchestration
process

Monitoring
process

/benchmark
directory

/results
directory

Benchmark
process

Figure 4.1: Overview of the components comprising the BenchFrame framework.

resources are cleaned up to ensure consistent conditions across runs. Finally, the monitoring

data is processed. This step includes data preparation, diagram creation, and a statistical

analysis.

4.2 Monitoring Process

The monitoring process, a python process triggered by the orchestration process, encom-

passes the creation of the necessary monitoring resources, and collecting and storing the

data provided by the power monitoring tools.

After creating the necessary monitoring resources, the process retrieves the power read-

ings from the monitoring tools. It stores this data in a .csv file. For each new benchmark

run, a new file is generated. Based on a preset granularity level, the amount of readings

per second can be adjusted. The final collection of result files holds the raw data provided

by the tools.

For each tools, the monitoring implementation varies. Therefore, we highlight the tools-

specific implementation in BenchFrame.

RAPL

RAPL provides data through a power capping framework1. Access to this framework is

provided through the powercap directory. An excerpt of the directory structure of powercap

in Linux is presented in Figure 4.2.

1https://docs.kernel.org/power/powercap/powercap.html

24

4.2 Monitoring Process

/sys/class/powercap/intel-rapl/
intel-rapl:0/

energy_uj
name
max_energy_range_uj
intel-rapl:0:0/

energy_uj
name
max_energy_range_uj
...

...
intel-rapl:1

...
...

Figure 4.2: Directory structure of the RAPL interface in the Linux /sys filesystem.

1 rapl_path = '/sys/class/powercap '
2 rapl_sockets = sum(
3 1 for name in os.listdir(rapl_path)
4 if name.startswith('intel -rapl') and name.count(':') == 1
5)

Listing 4.1: Analysis of the power capping framework.

The framework provides information per power zone, where each power zone repre-

sents one processor. In the presented file structure, the power zone is represented as

intel-rapl:0. Various details can be accessed for each power zone. This directory in-

cludes, among other data, the power zone name, the energy counter energy_uj (in mi-

crojoules), and the maximum value max_energy_range_uj for this counter. Additionally,

each power zone includes a subzone, such as intel-rapl:0:0, which represents the mem-

ory domain associated with the processor. This directory follows a similarly structure and

also includes the name, the energy counter, the maximum counter value, and other related

information.

The first step of the monitoring process is to setup all required resources. For RAPL,

we first need to evaluated the structure of the power capping framework – this can be seen

in Listing 4.1. For this purpose, we count the number of power zones in the intel-rapl/

directory.

To retrieve the data from each power zone and the associated subzone, we first construct

the path to each zone and then read the data. We iterate through each power zone and then

25

4. BENCHFRAME – POWER-BENCHMARKING FRAMEWORK

1 def read_rapl(sockets):
2 for socket in range(sockets):
3 socket_paths = [f"/sys/class/powercap/intel -rapl{socket }/

energy_uj",
4 f"/sys/class/powercap/intel -rapl:{ socket }:0/

energy_uj"]
5 with open(socket_paths [0], 'r') as file:
6 data_rapl.append(int(file.read().strip ()))
7 with open(socket_paths [1], 'r') as file:
8 data_rapl.append(int(file.read().strip ()))
9 return data_rapl

Listing 4.2: Retrieving RAPL readings per power zone.

return the collection of readings. This method returns for each processor and associated

memory domain the consumed energy since the last reset.

This reading represent the energy (in microjoules). To convert this to power (in mi-

crowatts), we divide the difference between the last and the current reading through the

time difference:

P =
dE

dT
=

Ei − Ei−1

Ti − Ti−1
(4.1)

Where:

P : is the power draw.

Ei: is the current energy value.

Pi−1: is the previous energy value.

Ei: is the current timestamp.

Ei−1: is the previous timestamp.

IPMI/Redfish

For the implementation of BenchFrame, we utilize Redfish to retrieve power readings from

the BMC, as it is a more modern and more secure implementation of IPMI.(13) Further-

more, it provides a python library1 which we use to access power monitoring data from

the RESTful API interface.

During the initialization phase of the monitoring step we need to create a Redfish object

REDFISH_OBJ by calling the redfish_client() method and logging in. This happens in

the method setup_Redfish() as presented in Listing 4.3.
1https://github.com/DMTF/python-redfish-library

26

4.2 Monitoring Process

1 import redfish
2

3 def setup_Redfish ():
4 credentials = ("<<username >>", "<<password >>")
5 url = "<<redfish_url >>"
6 REDFISH_OBJ = redfish.redfish_client(base_url=url , username=

credentials [0], password=credentials [1], default_prefix='/
redfish/v1/')

7 REDFISH_OBJ.login(auth="session")
8 return REDFISH_OBJ

Listing 4.3: Redfish data retrieval

1 import redfish
2

3 def read_Redfish(REDFISH_OBJ):
4 response = REDFISH_OBJ.get("/redfish/v1/Chassis /1/ Power")
5 if response.status == 200:
6 return response.dict['PowerControl '][0]['PowerConsumedWatts

']

Listing 4.4: Redfish data retrieval

Next, we can retrieve data through this object by calling the get() method with the

corresponding url. To retrieve power information we can call the endpoint /redfish/v1/

Chassis/1/Power. This gathers all data related to the power supply units and power

consumption retrieved by the BMC. After we check whether the call was successful, we

store the data. Hereby, we focus on the PowerConsumedWatts value, which includes the

total power draw of the system.

After we finish the monitoring process, we need to clean up the resources by executing

REDFISH_OBJ.logout().

Netio PowerPDU 4KS

Netio PowerPDU provides data through several networking protocols like HTTP, MQTT,

Modbus, and more. We utilize their python library Netio1, which uses HTTP to access

data from the PDUs.

Before accessing any power readings, we must initialize Netio object. To do so, we

provide the IP address related to the PDU, as well as authentication credentials, which we
1https://github.com/netioproducts/PyNetio

27

4. BENCHFRAME – POWER-BENCHMARKING FRAMEWORK

1 from Netio import Netio
2

3 def setup_PDU ():
4 PDU_L = Netio("<<NETIO_IP_L >>",
5 auth_rw =("<<username", "<<password >>"))
6 PDU_R = Netio("<<NETIO_IP_R >>",
7 auth_rw =("<<username", "<<password >>"))
8 return PDU_L , PDU_R

Listing 4.5: Initializing Netio objects.

1 from Netio import Netio
2

3 def read_PDU(PDU_L , PDU_R):
4 output_L = PDU_L.get_output('<<PDU_NODE_ID >>').Load
5 output_R = PDU_R.get_output('<<PDU_NODE_ID >>').Load
6 return {output_L , output_R}

Listing 4.6: Retrieving power data.

set during the installation of the PDUs. Since we work with a dual power supply setup,

we issue two objects, as presented in Listing 4.5.

Afterwards, we can retrieve power readings by calling the get_output() method. Here

we need to specify the ID related to the specific socket on the PDU. From the returned

object we can read the Load attribute which gives us the current power draw in Watts.

This step is presented in Listing 4.6

4.3 Benchmark Scripts

To execute the benchmark experiments, we utilize three benchmarking tools. These tools

must be installed on the system and added to the path, so that we can include them in the

benchmarking scripts. The scripts are bash scripts, which are executed by the orchestration

process. Depending on the benchmark experiment, we modify the script settings to fit the

purpose. In this section we give an introduction to each benchmarking tool and explain

how we included it in the framework.

The benchmark scripts are collected in the benchmark directory. The orchestration

process iterates over each script in this directory and, after starting the monitoring pro-

cess, executes the script. This execution happens in a subprocess. The script execution

28

4.3 Benchmark Scripts

1 from Netio import Netio
2

3 def run_script(run):
4 script_path = f"/<<FULL_BENCHFRAME_PATH >>/{run [1]}"
5 process = subprocess.Popen (['bash', script_path],
6 stdout=subprocess.PIPE , stderr=subprocess.PIPE , text=True)
7 process.wait()
8

9 for folder_item in os.listdir('scripts/'):
10 run = (os.path.splitext(folder_item)[0], f"scripts /{ folder_item

}")
11 run_script(run)

Listing 4.7: Execution of multiple benchmark scripts.

1 #!/bin/bash
2

3 stress -ng --cpu $(($(nproc) / 2)) --timeout 30s

Listing 4.8: Execution script for the CPU_HALF_100 benchmark.

orchestration can be seen in Listing 4.7.

stress-ng

We utilize the stress-ng benchmarking tool to execute stress tests on both the CPU and

memory.

For CPU stress testing, we configure the number of CPUs cores designated to run the

workload, as well as the load on each core. The benchmarking duration is specified using

the –timeout flag. An example configuration for the CPU_HALF_100 benchmark is shown

in Listing 4.8.

In additional, we use stress-ng to execute memory benchmark test. For this purpose,

we leverage the virtual memory feature, which allows us to define memory jobs, specify a

job method, and specify the amount of memory to be used. An example configuration for

the MEM_READ benchmark is provided in Listing 4.9.

iPerf3

For networking benchmarks, we utilize the iPerf3 benchmarking tool. This tool can oper-

ate in two different modes: as a client or as a server. The system running the benchmarking

29

4. BENCHFRAME – POWER-BENCHMARKING FRAMEWORK

1 #!/bin/bash
2

3 stress -ng --vm 2 --vm -bytes 75% --vm -method read64 --timeout 30s

Listing 4.9: Execution script for the MEM_READ benchmark.

1 #!/bin/bash
2

3 ssh -i <<path to remote ssh key >> <<user >>@<<remote server >> "
iperf3 -s -1" &

4

5 # Wait for the server to start
6 sleep 2
7

8 iperf3 -c <<remote ip address >> -t 30

Listing 4.10: Execution script for the NETWORK_SEND benchmark.

framework acts as the client, while a separate remote system functions as the server. The

client is responsible for executing commands both locally and remotely. An example exe-

cution of the NETWORK_SEND benchmark is shown in Listing 4.10.

fio

The final benchmarking tool we utilize is fio, which enables stress testing of a system’s

storage. Since this tool operates at the file system level, it requires specifying test file

path, the workload size, buffer size, operation type, and other parameters. An example

configuration for the STORAGE_WRITE benchmark is shown in Listing 4.11

30

4.3 Benchmark Scripts

1 #!/bin/bash
2

3 fio --filename=tmp/testfile --size=2G --bs=4k --rw=write --direct =1
--runtime =30s --time_based --ioengine=posixaio

Listing 4.11: Execution script for the STORAGE_WRITE benchmark.

31

5

Benchmark Design

We utilize BenchFrame, introduced in Section 4, to measure the energy consumption of the

server under various workloads. By doing so, we can evaluate the power measurement tools,

and answer RQ-3 as presented in Section 1.2. To this end, we conduct 12 experiments on

the system, which are classified into five different categories. The first four categories focus

on the system component they address, while the fifth focuses solely on the performance

and behavior of the power measurement tools. An additional idle measurement is used

as a baseline for comparison. In the following sections we will first establish experiment

objectives which we want to address with the experiments. Afterwards, we present an

overview of the benchmark experiments we execute, as well as, the experiment setup.

Then, we introduce the experiment methodology, and, finally, evaluate the results and

present our key findings.

5.1 Evaluation Objectives

We classify the energy consumption benchmark experiments in five categories. Each cate-

gory consists of benchmark test that are executed using the presented benchmark frame-

work. To determine the most relevant server components, we follow an approach presented

by Ahmed et al.(12) as presented in Section 3.3.1. Based on their model, we aligned the first

four experiment categories with the relevant components. Therefore, we run benchmark

experiments on the CPU, the RAM, the storage, and the Network Interface Controller

(NIC). For each of these experiment categories we want to evaluate following experiment

questions:

EQ-1: To what extent does the component influence the total energy consumption?

EQ-2: What are common workloads for the different components?

33

5. BENCHMARK DESIGN

Category Benchmark Description

CPU

Static Constant full CPU load across all cores

Distributed All CPUs running at 50% utilization
vs. half running at 100% utilization

Linear Gradually increasing CPU usage

RAM
Static Constant memory access, with read and write mixed
Read vs. Write One write job compared to one read job

NIC
Static Constant data transmission to a remote server
Send vs. Receive One send job compared to one receive job

Storage
Static Constant data writing to a file in storage
Read vs. Write Writing data to compared to reading data from a file

Tool
Latency Tool behavior under rapidly changing loads
Granularity Tool reading in various granularity levels
Stability Error and spread over an extended monitoring period

Table 5.1: Overview of the benchmarking categories and their associated experiments.

EQ-3: How does the energy consumption vary under different workloads?

The fifth category investigates the behavior of the power monitoring tools under dif-

ferent settings. We determined the different experiments of this section by focusing on

the important characteristics of the monitoring tools. Therefore, we decided on latency,

granularity, and stability, as these answer the most important questions regarding the

tool selection:

EQ-4 How accurate is the tool?

EQ-5 How fine can we measure with the tool?

EQ-6 How stable are the readings the tool provides?

5.2 Experiment Design

In this section we will present the experiments we conduct per category. For the first four

categories, we compare a comprehensive workload benchmark run to the idle state of the

system to address EQ-1. For each component we will then address EQ-2 and establish

common utilization patterns. These patterns are compared to answer EQ-3. For the last

category – Tool assessment –, we execute one experiment per evaluation objective. An

overview of the categories and the corresponding experiments is presented in Table 5.1.

34

5.2 Experiment Design

5.2.1 CPU Benchmarks

To evaluate the influence of the CPU on the energy consumption of the whole system,

we execute three CPU-intensive benchmark tests. The first experiment involves running a

CPU-intensive workload on every core, allowing us to analyze how CPU workloads impact

system-wide energy consumption and address EQ-1. To answer EQ-2, which focuses on

workload patterns, we execute two additional experiments. These experiments examine

how the distribution of workloads across CPU cores and linear growing CPU load affect

the system’s energy consumption. In total, the following three benchmark experiments are

executed:

1. Static: This test aims to compare full CPU utilization with the idle state of the

server. BenchFrame evaluates the influence of the CPU on the energy consumption

with this experiment. The goal of this experiment is to evaluate the portion of energy

that is consumed by the CPU intensive tasks.

2. Distribution: In this experiments we want to compare in which extend the distri-

bution of workloads on the CPU cores influences the energy consumption. Therefore,

BenchFrame includes these two benchmarks:

- The first run stresses half of the CPU cores to full compute capacity. With this

case we want to reproduce a fully saturated server.

- The second test run stresses all CPU cores only to 50% of there total compute

capacity.

Based on these two test runs, we imitate similar workloads with two different distribu-

tions and analyze how the power consumption varies under these different conditions.

3. Linear: The last CPU-related experiments investigates the distribution of energy

consumption under growing workload. For this purpose, BenchFrame linearly incre-

ments the workload put on all CPU cores.

5.2.2 Memory Benchmarks

By executing benchmark test on BenchFrame that execute memory stress tests, we in-

vestigate the influence on memory tasks on the total energy consumption of the system.

To investigate the influence of memory workloads on the system, BenchFrame includes a

static experiment. This experiments addresses EQ-1 and analyses the influence of mem-

ory workloads on the system. As memory can be accessed either to read or to write

35

5. BENCHMARK DESIGN

data, BenchFrame includes a second experiment which compares these two functionalities.

Therefore, we execute following memory benchmark experiment:

1. Static: BenchFrame compares a mixture of read and write operations to the idle

state of the system. Hereby, we evaluate the influence of memory workloads on the

system’s energy consumption. We utilize 75% of the available memory capacity.

2. Read vs. Write: To examine the energy consumption behavior of memory access

jobs, BenchFrame includes two different benchmark tests. The first analyzes write

operations on the memory, while the second focuses on read operations. For both

benchmark test, one job is issued per CPU core. With this experiment, we analyze

the influence of memory access on the system’s total energy consumption.

5.2.3 Network Benchmarks

To evaluate the influence of networking tasks through the utilization of the NIC, BenchFrame

includes networking benchmarks. Hereby we evaluate in which degree networking jobs in-

fluence the energy consumption of the system. Therefore, BenchFrame executes following

networking benchmark experiment:

1. Static: BenchFrame executes a send load on the NIC to evaluate the portion of

energy the is necessary to execute networking tasks. For this purpose BenchFrame

spawns a job which constantly sends data to a remote server.

2. Send vs. Receive: To compare the behavior of energy consumption between send

and receive workloads, BenchFrame includes one experiment per workload type.

5.2.4 Storage Benchmarks

The last component-oriented category focuses on benchmark test related to storage. We

evaluate the influence of storage tasks on the energy consumption of the system through

these experiments. To do so, BenchFrame executes following benchmark experiments:

1. Static: To evaluate the influence of storage operation on the system’s energy con-

sumption, BenchFrame executes a mixed read and write experiment, where randomly

data is either written or read from a file in storage.

2. Read vs. Write: To compare read and write operations, BenchFrame executes two

experiment: First, BenchFrame writes a certain amount of data to a file in storage.

36

5.3 System Setup

Afterwards, in a second benchmark test, BenchFrame reads this data again. With

this experiment we compare the behavior of read and write jobs within the system.

5.2.5 Tool Benchmarks

The last category of benchmark experiments focuses on functionality and operation of the

power monitoring tools. For this purpose, we execute experiments to evaluate how the tools

functions under various settings and we investigate specific properties. The experiments

we execute are:

1. Latency: To evaluate the response time of the monitoring tools, BenchFrame runs a

rapidly changing CPU stress benchmark and we analyze how quickly the tools react

to the changes in energy consumption. With this experiment we aim to highlight

potential monitoring latencies of the tools.

2. Granularity: We compare different monitoring granularity settings to analyze how

frequently data can be retrieved from the tools. For this purpose, we monitor the

energy consumption with varying monitoring granularity and then analyze how often

readings can be made under this setting.

3. Stability: To analyze the stability of the monitoring tools, we measure the energy

consumption during an extended idle period and evaluate how much the readings

fluctuate.

5.3 System Setup

An overview of the System Under Test (SUT) can be seen in Figure 5.1. 1○ NODE

represents the main server which runs the benchmarking framework and executes the ex-

periments. This server includes a 20-core Intel® Xeon® Silver 4416+ CPU, 8 × 32 GB

DDR5 (SK Hynix HMCG88MEBRA107N) memory sticks which provide 256GB of RAM,

a 1.92TB Samsung PM893 SATA SSD, and 2 × Intel Ethernet Controller I210. These

components are the ones addressed by the benchmarking experiments. Additionally, the

server consists of a Supermicro X13SEW-F motherboard and runs on Ubuntu 22.04.4 LTS.

The power supply for this server are two Supermicro PWS-861A-1R. Based on this dual

power supply we include two 2○ PDUs in the system. Both are of the same type, namely

NETIO PowerPDU 4KS. The server’s power supply units are connected to the PDUs via

3○ industry standard power cables. And the measurement from the PDUs can be retrieved

37

5. BENCHMARK DESIGN

⚡️⚡️

HELPER

NODE
PDU 1 PDU 2

1
2 2

4

3 3

5

Figure 5.1: System architecture used for the benchmarking experiments.

via the local Ethernet network. Additionally, a 4○ HELPER server is installed to function

as a communicator for networking experiments. This second server includes 2 × Intel®

Xeon® Silver 4210R, 2 × Intel Ethernet Controller I210, and runs on Ubuntu 22.04.5 LTS.

The two servers are connected via a 5○ private local Ethernet network.

5.4 Benchmark Methodology

The benchmark experiments were executed on the hardware described in Section 5.3, using

the framework presented in Section 4. Each experiment consist of at least one benchmark

run. The benchmark run execution always follows the same sequence:

1. The experiment is executed five times and the results are monitoring and stored.

2. After the experiment finishes, the results are loaded, and the average per second is

calculated. This results in a dataset where either zero or one value is present per

second.

3. Missing values are estimated using linear interpolation.

4. The resulting data, consisting of one monitoring result per second,1 is stored. Each

result set therefore contains five equally long data collections, each uniformly struc-

tured with one reading per second.

1This value may vary depending on the monitoring granularity.

38

5.4 Benchmark Methodology

Through this process, we eliminate distortions caused by faulty measurements or other

processes and can generate a clean dataset. To address the experiments presented in

Section 5.1, we execute various benchmark runs. The complete benchmark suit is presented

in Appendix B.

39

6

Evaluation

After executing the experiments and collecting the results we evaluate the measurements.

Hereby we start with a comparison of the static benchmark experiments. For each workload

type, one static benchmark experiments was executed. After this we present the results

for the component specific experiments. At last, we highlight our results from the tool

behavioral experiments.

6.1 Static Evaluation

To analyze the influence of different workloads on the energy consumption of the sys-

tem, we compare the total energy consumed during the experiment run. Therefore, we

compare the static experiment, where a constant component-specific load is put on the

system. We analyze the total energy consumption recorded during these runs to assess the

component-specific impact on overall power usage. To make these comparable, we designed

the experiments to run for the same duration and put similar workloads on the system.

The total energy consumption of the static workload experiments are presented in Figure

6.1.

Through these experiments we were able to show that CPU workloads have the most

influence on the energy consumption of the system. In our experiments the energy con-

sumption of the CPU benchmark compared to the idle state increased by a factor of 2.51

for RAPL, 1.66 for Redfish, and 1.28 for the Netio PowerPDU.

Observation 1

CPU workloads have the greatest impact on the system’s energy consumption, fol-
lowed by memory workloads. In contrast, storage and networking workloads exhibit
only a minor influence.

41

6. EVALUATION

Idle CPU Memory Storage Network
0

0.5

1

1.5

0.41

1.03

0.73

0.43 0.42

0.96

1.6

1.28

0.98 0.97

1.22

1.57

1.37

1.23 1.22

Experiment

E
ne

rg
y

C
on

su
m

pt
io

n
(W

h)

RAPL Redfish PowerPDU

Figure 6.1: Average total energy consumption per static experiment with error bars (30-
second active benchmark duration, excluding setup and processing time).

6.2 Component Workload Evaluation

Additional to the static experiment evaluation, we executed component based experiments,

specific to the component’s common use cases. In this section we present the results for

this analysis and highlight behavioral characteristic in the energy consumption and how

they were detected by the different monitoring tools.

CPU Benchmarks

In the CPU benchmark category, as presented in Section 5.2.1, we execute two additional

use-case-based experiments, namely Distribution and Linear.

Distribution

In this experiment, we investigate the relationship between energy consumption and dif-

ferent workload distributions across CPU cores. The total energy consumption for both

experiments is shown in Figure 6.2. Across all three measurement sources, the results

suggest that distributing a workload across all CPU cores is more energy-efficient than

running a subset of cores at full utilization.

However, the CPU benchmarking tool may introduce inaccuracies, as it does not guarantee

a fixed level of CPU utilization. To account for this, we analyze the efficiency of the two

benchmark runs by calculating the average energy consumption per 1% of CPU utilization.

This allows us to evaluate whether distributing workloads across multiple cores is more

42

6.2 Component Workload Evaluation

REDFISH PDU RAPL
Power Monitoring Tool

2500

3000

3500

4000

4500

5000

5500
En

er
gy

 (J
ou

le
s)

5151.6
5345.4

3131.1

CPU_HALF_100

REDFISH PDU RAPL
Power Monitoring Tool

2500

3000

3500

4000

4500

5000

5500

En
er

gy
 (J

ou
le

s)

4927.5

5209.5

2948.9

CPU_ALL_50

Figure 6.2: Comparison of full utilization on half of the CPU cores and 50% utilization on
all CPU cores, showing individual runs and the overall mean.

energy efficient than fully utilizing a subset of cores before allocating load to additional

ones.

Efficiency is calculated by dividing the total energy consumption by the average CPU

utilization, as shown in Equation 6.1:

Efficiencyb =
Eb

UCPU
b

(6.1)

Where:

Efficiencyb: is the efficiency of benchmark b (in J/%).

Eb: is the energy consumed during benchmark b (in J).

UCPU
b : is the average CPU utilization during benchmark b (in %).

To calculate efficiency, we first retrieve the average CPU utilization from the monitoring

data: for the CPU_HALF_100 benchmark, we observe 44.30%, and for the CPU_ALL_50

benchmark, 43.35%. These values represent the average CPU utilization recorded over

the entire duration of the benchmark run.

Additional, we retrieve the total energy consumption over the benchmark run. This metric

as well as the resulting efficiency are presented in Table 6.1.

These results support our hypothesis that distributing workloads across multiple cores

leads to higher energy efficiency compared to fully utilizing fewer cores. Furthermore, this

43

6. EVALUATION

Tool
CPU_HALF_100 CPU_ALL_50

Eb Efficiency (J/%) Mean energy (J) Efficiency (J/%)

Redfish 5151.6 116.29 4917.5 113.44
PDU 5345.4 120.66 5209.5 119.9
RAPL 3131.1 70.68 2948.9 68.02

Table 6.1: Efficiency of each distribution modes.

behavior is consistently observed across all power monitoring tools, indicating that each

tool reliably detects this pattern.

Observation 2

Distributing workloads across multiple CPU core leads to a more energy efficient
execution compared to utilizing single cores to full extend before including additional
cores. All three monitoring tools are able to observe this pattern. This shows that
the energy consumption of CPU cores is not linearly related to the CPU utilization.

Linear

To further investigate the energy consumption of CPU cores under varying utilization

levels, we analyze the results from the CPU_LINEAR benchmark, where the CPU utilization

across all cores is consistently increased by 10% till full utilization. The energy readings

from all three power monitoring tools under linearly increasing CPU utilization are shown

in Figure 6.3.

Two notable patterns emerge from the results. First, energy consumption increases most

rapidly between approximately 20% and 50% CPU utilization. Second, the power readings

from Redfish and RAPL increase more steeply than those from the PowerPDU – so much so

that, at around 80% CPU utilization, the Redfish readings exceed those of the PowerPDU.

Observation 3

The power consumption does not increase linearly with CPU utilization. Further-
more, the readings from Redfish and RAPL rise more quickly than those from the
PowerPDU.

Memory Benchmarks

In addition to the static memory benchmark, we execute one more experiment where we

compare the influence of read and write operations on the system’s energy consumption.

Read vs. Write

44

6.2 Component Workload Evaluation

0 5 10 15 20 25 30 35 40 45 50
Duration (s)

40

60

80

100

120

140

160

180

Po
we

r (
W

)

Redfish
PowerPDU

RAPL
CPU Utilization

0

20

40

60

80

100

CP
U

Ut
iliz

at
io

n
(%

)

CPU_LINEAR

Figure 6.3: Average power draw under linear increasing CPU utilization.

In this experiment, we investigate the energy consumption of memory read operations

compared to write operations. The results for both benchmarks are presented in Figure

6.4.

In both workload modes, the power readings are similarly distributed, suggesting compara-

ble energy consumption patterns. However, when analyzing the total energy consumption,

we observe that read operations consume slightly more energy than write operations. The

average total energy consumption for read and write workloads is 1.41kWh and 1.36kWh

for Redfish, 1.53kWh and 1.49kWh for the PowerPDU, and 0.79kWh and 0.76kWh for

RAPL, respectively.

Furthermore, we find that overall memory utilization does not significantly influence the

system’s energy consumption. This is evident in the diagrams, where an increase in memory

usage does not correspond to a noticeable change in power draw. The frequency of memory

access has a greater impact on energy consumption.

Observation 4

Read operations tend to have a bigger influence on the system’s energy consumption
compared to write operations. Additionally, the memory access rate influences the
energy consumption more than the utilization of the total memory.

45

6. EVALUATION

0 5 10 15 20 25 30 35
Duration (s)

40

60

80

100

120

140

160
Po

we
r (

W
)

Redfish
PowerPDU

RAPL
Memory Utilization

0

25

50

75

100

M
em

or
y

Ut
iliz

at
io

n
(%

)

MEM_READ

0 5 10 15 20 25 30 35
Duration (s)

40

60

80

100

120

140

160

Po
we

r (
W

)

Redfish
PowerPDU

RAPL
Memory Utilization

0

25

50

75

100

M
em

or
y

Ut
iliz

at
io

n
(%

)

MEM_WRITE

Figure 6.4: Power readings from read and write workloads on the memory.

0 5 10 15 20 25 30
Duration (s)

40

60

80

100

120

140

Po
we

r (
W

)

Redfish
PDU

RAPL

NETWORK_SEND

0 5 10 15 20 25 30
Duration (s)

40

60

80

100

120

140
Po

we
r (

W
)

Redfish
PDU

RAPL

NETWORK_RECEIVE

Figure 6.5: Power draw during send and receive benchmarks.

Network Benchmarks

In networking sending or receiving data are the only two different modes. Therefore, we

set out to investigate differences in these workload types. But, as was already witnessed

in the static analysis in Section 6.1, networking has only little influence on the system’s

energy consumption. Therefore, we do not expect to see huge differences in those two

benchmark experiments. The result, presented in Figure 6.5, confirm this assumption and

show that neither sending or receiving data has a huge influence on the system’s energy

consumption.

46

6.2 Component Workload Evaluation

0 5 10 15 20 25 30
Duration (s)

40

60

80

100

120

140
Po

we
r (

W
)

Redfish PowerPDU RAPL

STORAGE_READ

0 5 10 15 20 25 30
Duration (s)

40

60

80

100

120

140

Po
we

r (
W

)

Redfish PowerPDU RAPL

STORAGE_WRITE

Figure 6.6: Power readings from read and write workloads on the storage.

Storage Benchmarks

The last component based benchmark experiment is related to read and write operations

to the storage.

Read vs. Write

The power readings of read and write workloads for all three tools is shown in Figure 6.6.

As the diagrams show, the power readings are not constant for either benchmark. However,

when analyzing the total energy consumption, we observe that all tools report similar

values for both read and write operations. The total energy consumption for read and

write benchmarks is 1.14kWh and 1.13kWh for Redfish, 1.31kWh and 1.30kWh for the

PowerPDU, and 0.60kWh and 0.58kWh for RAPL, respectively.

An additional important factor in storage operations is the bandwidth at which data is

transferred. For write operations, the average bandwidth is 78.2MiB/s, while for read

operations it reaches 126MiB/s. Consequently, despite comparable power consumption,

read operations are able to process approximately 61% more data, making them more

efficient in terms of data throughput.

Observation 5

Read and write operations exhibit similar energy consumption. However, read oper-
ations achieve higher bandwidth, enabling more efficient and faster data processing.

47

6. EVALUATION

0 5 10 15 20
Duration (s)

40

60

80

100

120

140

160

180
Po

we
r (

W
)

Redfish
PowerPDU

RAPL
CPU Utilization

0

20

40

60

80

100

CP
U

Ut
iliz

at
io

n
(%

)

LATENCY

Figure 6.7: Latency benchmark plot including power readings and CPU utilization.

6.3 Usability Evaluation

Latency

To analyze the latency of the tools, we compare how quickly the readings adjust to changes

in the workload. For this purpose we rapidly change the CPU utilization and compare the

power readings. The results of this benchmark can be seen in Figure 6.7. Hereby, all

power monitoring tools detect changes at least with a delay of a second. But especially the

PowerPDU react on changes in the CPU utilization slower. This can be seen for example at

timestamp 4, where Redfish and RAPL readings are already decreasing, while the readings

from the PowerPDU do not change. This behavior can be identified throughout the whole

benchmark experiment.

Observation 6

All investigated tools provide readings with at least one second delay. But compared
to the other monitoring tools, the PowerPDU responds more slowly to changes in
system utilization.

48

6.3 Usability Evaluation

0 0.001 0.01 0.05 0.1
0.0001

0.001

0.01

0.1

1

10
30

100

Monitoring Granularity

E
xe

cu
ti

on
T

im
e

(s
)

RAPL Redfish
PowerPDU No Tool (Baseline)

Figure 6.8: Log-scale comparison of execution times across different monitoring granularities.

Granularity

To investigate the granularity, we execute an additional benchmark test which is not part

of BenchFrame. For this purpose, we utilize the additional code as described in Appendix

C. Hereby we want to investigate how fast we can retrieve power readings from the tools.

Our results are presented in Figure 6.8 and the data readings can be found in Appendix

D. Between each new reading, we wait for a certain amount of time. This value is depicted

as Monitoring Granularity. To calculate the execution time, we monitor the time before

and after each run and calculate the difference. The run itself consists of 100 consecutive

readings. The results presented are averaged over five runs. To have a comparison baseline,

we also executed the script without retrieving any tool readings.

Observation 7

RAPL offers the most granular measurement capability. Since it is an internal soft-
ware tool that reads directly from registers, no additional overhead from APIs or
external communication is introduced. In contrast, the PowerPDU performs worst in
the granularity experiment, likely due to networking overhead, as its data must be
transmitted over the local area network.

49

6. EVALUATION

0 30 60 90 120 150 180 210 240 270
Duration (s)

20

40

60

80

100

120

140
Po

we
r (

W
)

Redfish
PDU
RAPL

Redfish Range
PDU Range
RAPL Range

STABILITY

Figure 6.9: Stability benchmark which includes measurements over 300s without any work-
load on the system.

Stability

To analyze the stability of the readings provided by the different power monitoring tools,

we examine the distribution of measurements during an idle period in which no workload

is applied to the system. For this purpose, we calculate the mean power draw (µ) and the

standard deviation (σ). The results are presented in Table 6.2.

The average power draw, measured in watts, is highest for the PowerPDU and lowest

for RAPL, which aligns with the findings reported in Observation 1. However, the most

stable readings are provided by Redfish, which exhibits a standard deviation of only 0.18.

In contrast, the highest variability is observed in the RAPL readings, with a standard

deviation of 2.24.

RAPL Redfish Netio PowerPDU 4KS

µ (kW) 45.03 101.52 128.62
σ 2.24 0.18 0.85

Table 6.2: Mean and standard deviation of the stability experiment.

50

6.4 Conclusion

Observation 8

Redfish provides the most stable power readings, while RAPL exhibits the highest
fluctuations.

6.4 Conclusion

The benchmark experiments focused on two main categories: component-based analysis

and the operability of the monitoring tools. By formulating a set of experimental questions,

we were able to, first, compare different system workloads. Second, we examined various

workload patterns across different components and analyzed their impact on overall energy

consumption. Our findings indicate that CPU workloads have the most significant influence

on energy consumption, followed by memory and storage operations.

In addition, we evaluated the operability of the monitoring tools. We found that the

PowerPDU exhibits the highest delay in response, while Redfish and RAPL provide more

time-accurate readings. Furthermore, the PowerPDU offers the lowest measurement granu-

larity, whereas RAPL supports the highest. Finally, in terms of stability, Redfish delivered

the most consistent readings, while RAPL showed the greatest variability.

51

7

Related Work

Analyzing the energy consumption of servers is a well-established research field.1 Therefore,

we highlight recent advancements in this area and examine the current state of research.

To this end, we present the most relevant research projects and compare them to our work.

We analyze the selected projects with respect to the power monitoring tools employed and

the benchmarking suit used. A comprehensive list of related research projects is provided

in Table 7.1.

Reference Year

Hardware
and

software
tools

Internal
and

external
tools

Component
based

benchmarking

Operability
benchmarking

Hackenberg et al.(14) 2013 ✓ ✓ – –
Khan et al.(15) 2018 – – – –
Kavanagh et al.(16) 2019 – ✓ – –
van Kemenade(17) 2024 ✓ ✓ – ✓

Freina(18) 2024 – – – –
Andringa et al.(19) 2025 ✓ ✓ – –
This thesis 2025 ✓ ✓ ✓ ✓

Table 7.1: Related research projects and their focus.

7.1 Power Monitoring Tools

The research projects by Khan et al.(15) and van Kemenade(17) focus exclusively on RAPL

or RAPL-based tools. Both projects selected this tool due to it’s popularity and ease of
1As of July 16th, 2025, IEEE Xplore listed 8,566 publications related to the query “server energy

consumption” since 2020.

53

7. RELATED WORK

use, as it requires neither hardware installation or complex setup. However, limiting the

analysis on a single tool prevents a comprehensive comparison and restricts all observations

made during the project to RAPL alone.

On the other hand, focusing on a fine-grained, purely hardware-based evaluation – such

as the approach presented by Hackenberg et al.(14) – requires additional installation and

setup. While this method is feasible under research conditions, it lacks applicability in

typical data center environments.

Our project includes both internal and external tools. This ensures comparability and al-

lows us to identify similarities in the results. Furthermore, it enables us to draw conclusions

across multiple tools and directly compare their behavior.

7.2 Benchmarking

The focus and scope of benchmarking in energy-related research can vary widely. While

our approach targets system components and the operability of monitoring tools, other

research projects conduct their evaluations using standard benchmark suites or specific

use cases.

Freina(18) focuses his evaluation on estimating power consumption across the compute

continuum – comprising thing, edge, and cloud resources. Hackenberg et al.(14) apply

a variety of common benchmark tests in their evaluation. This makes their results more

comparable to other studies using similar tests. However, this approach limits the potential

for fine-grained analysis of the relationship between specific benchmark tasks and energy

consumption.

By including both component-based and operability-focused benchmarks in our suite, we

can make informed statements about the energy consumption of specific components under

common workloads. Additionally, we are able to assess the functionality of monitoring tools

and identify limitations inherent to particular tools.

54

8

Conclusion

As part of this research project, we investigated different power monitoring techniques.

For this purpose, we designed and implemented a benchmark framework. This framework

allows us to execute and analyze benchmark experiments to assess different power mon-

itoring tools. We established a comprehensive benchmark suite which focuses on, first,

common workload types and, second, on the operability of the tools.

8.1 Answering Research Questions

RQ-1: Which techniques and tools are available to monitor server energy consumption and

how do they differ?

To answer the first research question, we investigated different tools, which are currently

provided by either the system or external vendors. We established a classification which

differentiates between the implementation method, the measurement scope, and the inte-

gration of different tools. Afterwards, we set up requirements for a comprehensive tool

selection and decided on a set of tool which covers these requirements.

RQ-1: How can power monitoring tools be evaluated?

Research question two focuses on the assessment of the tools. For this purpose, we in-

vestigated common workload types for servers related to its components. We defined four

component based benchmark categories, namely CPU, memory, networking, and storage

benchmarks. Additional, we added operability benchmarks to investigate the functionality

of the tool under different settings.

RQ-1: How do different workloads influence the overall system’s energy consumption, and

to what extent can power monitoring tools capture this behavior?

The final research question relates to the execution of the benchmarking experiments.

55

8. CONCLUSION

First, we designed a benchmarking framework which allows us to execute benchmark ex-

periments. After successfully implementing the framework and executing it, we were able

to assess the different power monitoring tools, based on the benchmark experiments. Our

observations lead to a deeper understanding of the tools and their operability. Through

various observations, we discovered that:

1. CPU workloads influence the energy consumption the most, followed by memory

workloads.

2. All investigated power monitoring tools are able to document power patterns.

3. Software-based tools allow a more fine-grained monitoring.

4. Internal tools may only monitor a subset of components, while external tools take

the total energy consumption into account.

8.2 Threats to Validity

Even though we implemented a comprehensive benchmarking framework, some parts of the

implementation and experiment execution are subject to question. We identified following

threats to validity:

1. Experiment isolation

Isolating workloads without any interference is almost impossible on servers. Every

server runs background jobs, which means that apart from the benchmark exper-

iments other processes may stress the system. This can interfere with the power

readings.

2. Workload comparability

To analyze the influence a certain workload has on the system’s energy consumption,

we compared various workloads. The benchmark experiments were established using

common attributes, recommended by the documentation of each tool. But to make

the results fully comparable, first, the experiments itself should be compared. Hereby,

the questions arises how different workloads can be compared, since all of them

address different operation types.

56

8.3 Future Work

8.3 Future Work

Based on our research advances, future projects should further investigate the tools. There-

fore, we established a list of research directions:

1. One important aspect is the overhead of the different tools. This metric is not only

important to better understand the power readings provided by the tools, but also

influences the energy consumption of the system. Therefore, it influences research

advances but also the application of tools in established data centers.

2. To make the results of this framework more easily comparable, additionally to the im-

plemented benchmarks, already established benchmark suits should be tested. This

allows us to compare not only the tools but also assess the framework for correctness,

execution overhead, and other metrics

3. Additional to the component based analysis, the benchmark experiments should be

expanded with use-case experiments. Our approach allowed us to investigate the

influence on component based workloads, but often servers need to handle various

jobs simultaneously.

4. Apart from the three monitoring tools are other methods to evaluate the energy

consumptions of servers, which are simulations. This benchmark framework could

be replicated in a simulation to estimated the energy consumption of systems without

the need to establish a complete experiment setup.

57

References

[1] Simon Kemp. Digital 2025: Global Overview Report. Technical report, We

Are Social, Meltwater, April 2025. 1

[2] Bernardo Betley, Hana Dib, Bjørnar Jensen, and Bernhard Mühlre-

iter. The state of cloud computing in Europe: Increasing adoption, low

returns, huge potential. McKinsey Digital, April 2024. 1

[3] Steven Gonzalez Monserrate. The Cloud Is Material: On the Environ-

mental Impacts of Computation and Data Storage. MIT Case Studies in Social

and Ethical Responsibilities of Computing, 2022(Winter), January 2022. 1

[4] Council of the European Union European Parliament. Directive (EU)

2023/1791 of the European Parliament and of the Council of 13 September

2023 on energy efficiency and amending Regulation (EU) 2023/955 (recast)

(Text with EEA relevance), September 2023. 1

[5] Klaus Pohl and Chris Rupp. Requirements Engineering Fundamentals: A Study

Guide for the Certified Professional for Requirements Engineering Exam, Foundation

Level, IREB compliant. Rocky Nook, Santa Barbara, CA, second edition edition,

2015. 6, 12

[6] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. The

Datacenter as a Computer: Designing Warehouse-Scale Machines. Synthesis Lectures

on Computer Architecture. Springer International Publishing, Cham, 2019. 9

[7] Corey Gough, Ian Steiner, and Winston Saunders. Energy Efficient Servers:

Blueprints for Data Center Optimization. Apress, Berkeley, CA, 2015. 10

[8] Weiwei Lin, Fang Shi, Wentai Wu, Keqin Li, Guangxin Wu, and Al-Alas

Mohammed. A Taxonomy and Survey of Power Models and Power Modeling

for Cloud Servers. ACM Computing Surveys, 53(5):1–41, September 2021. 14

59

https://datareportal.com/reports/digital-2025-global-overview-report
https://mit-serc.pubpub.org/pub/the-cloud-is-material
https://mit-serc.pubpub.org/pub/the-cloud-is-material
http://data.europa.eu/eli/dir/2023/1791/oj/eng
http://data.europa.eu/eli/dir/2023/1791/oj/eng
http://data.europa.eu/eli/dir/2023/1791/oj/eng
http://data.europa.eu/eli/dir/2023/1791/oj/eng
https://link.springer.com/10.1007/978-3-031-01761-2
https://link.springer.com/10.1007/978-3-031-01761-2
http://link.springer.com/10.1007/978-1-4302-6638-9
http://link.springer.com/10.1007/978-1-4302-6638-9
https://dl.acm.org/doi/10.1145/3406208
https://dl.acm.org/doi/10.1145/3406208

REFERENCES

[9] The kernel development community. The Linux Kernel documentation,

2025. 16

[10] Intel Corporation. Intel® 64 and IA-32 Architectures Software Devel-

opers Manual, 2025. 16

[11] Super Micro Computer, Inc. IPMI User’s Guide, 2020. 17

[12] Kazi Main Uddin Ahmed, Math H. J. Bollen, and Manuel Alvarez. A Re-

view of Data Centers Energy Consumption and Reliability Modeling. IEEE

Access, 9:152536–152563, 2021. Publisher: Institute of Electrical and Electronics En-

gineers (IEEE). 19, 33

[13] Distributed Management Task Force. Redfish White Paper, 2018. 26

[14] Daniel Hackenberg, Thomas Ilsche, Robert Schöne, Daniel Molka, Maik

Schmidt, and Wolfgang E. Nagel. Power measurement techniques on

standard compute nodes: A quantitative comparison. In 2013 IEEE Interna-

tional Symposium on Performance Analysis of Systems and Software (ISPASS), pages

194–204, April 2013. 53, 54

[15] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurminen, and

Zhonghong Ou. RAPL in Action: Experiences in Using RAPL for Power

Measurements. ACM Transactions on Modeling and Performance Evaluation of

Computing Systems, 3(2):1–26, June 2018. 53

[16] Richard Kavanagh and Karim Djemame. Rapid and accurate en-

ergy models through calibration with IPMI and RAPL. Concur-

rency and Computation: Practice and Experience, 31(13):e5124, 2019. _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5124. 53

[17] Tim van Kemenade. Real-time Scaphandre Energy Metrics Pipeline Integrated with

Escheduler. Master’s thesis, Vrije Universiteit Amsterdam, Amsterdam, 2024. 53

[18] David Freina. End-to-End Power Model for the Compute Continuum. Master’s

thesis, Vrije Universiteit Amsterdam, Amsterdam, 2024. 53, 54

[19] Lars Andringa, Brian Setz, and Vasilios Andrikopoulos. Understanding

the Energy Consumption of Cloud-native Software Systems. In Proceedings

of the 16th ACM/SPEC International Conference on Performance Engineering, ICPE

60

https://docs.kernel.org/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://ieeexplore.ieee.org/document/9599719/
https://ieeexplore.ieee.org/document/9599719/
https://www.dmtf.org/sites/default/files/standards/documents/DSP2044_1.0.4.pdf
https://ieeexplore.ieee.org/abstract/document/6557170
https://ieeexplore.ieee.org/abstract/document/6557170
https://dl.acm.org/doi/10.1145/3177754
https://dl.acm.org/doi/10.1145/3177754
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5124
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5124
https://dl.acm.org/doi/10.1145/3676151.3719371
https://dl.acm.org/doi/10.1145/3676151.3719371

REFERENCES

’25, pages 309–319, New York, NY, USA, 2025. Association for Computing Machinery.

53

[20] NETIO Products a.s. PowerPDU Manual, 2024. 64

61

https://www.netio-products.com/files/download/sw/version/PowerPDU-MANUAL-en_3-0-0.pdf

Appendix A

Reproducibility

In this section we present how BenchFrame can be downloaded and executed. Through

this explanation, other researchers are able to reproduce our results. This section includes

the setup of the framework, as well as the requirements of the benchmark experiments.

A.1 Artifact check-list (meta-information)

• Program: BenchFrame

• Compilation: Python3

• Run-time environment: Ubuntu 22.04.4 LTS, Python 3.10.12, root rights required

• Hardware: System with RAPL and Redfish access, Netio PowerPDU 4KS

• Execution: For execution, the required software and hardware must be installed. Next, the
template.conf file must be copied, renamed to host.conf and filled out with all necessary
information. Afterwards, the framework can be executed.

• Metrics: Energy consumption and power over time (RAPL, Redfish, PowerPDU), CPU
utilization, memory utilization

• Output: One .csv file and two diagrams showing the power over time and the total energy
consumed per experiment

• Experiments: See Appendix B

• How much time is needed to complete experiments?: 1.5h

• Publicly available?: Yes, under https://github.com/THWU0412/BenchFrame

• Code licenses: MIT license

63

https://github.com/THWU0412/BenchFrame

A. REPRODUCIBILITY

A.2 Description

A.2.1 How to access

The source code of BenchFrame is shared via GitHub. Users can simply clone the repository

and execute the framework directly, no further compilation or builds are needed.

A.2.2 Hardware dependencies

BenchFrame was built with a specific set of power monitoring tools. Therefore, the system

must meet these requirements.

The tools are:

1. RAPL

2. Redfish

3. Netio PowerPDU 4KS

The user must ensure that these monitoring tools are installed and can be accessed.

A.2.3 Software dependencies

The power monitoring tools need to be installed as described in their manuals.

This includes:

1. RAPL: No additional software needed

2. Redfish: Enable IPMI as described here: https://www.thomas-krenn.com/en/wiki/

Configuring_IPMI_under_Linux_using_ipmitool. This will also enable Redfish

3. PowerPDU: Installation as described in the manual(20)

Additional, several tools need to be installed to run the benchmarking experiments.

These are:

1. stress-ng (https://github.com/ColinIanKing/stress-ng)

2. iperf3 (https://github.com/esnet/iperf)

3. fio (https://github.com/axboe/fio)

64

https://www.thomas-krenn.com/en/wiki/Configuring_IPMI_under_Linux_using_ipmitool
https://www.thomas-krenn.com/en/wiki/Configuring_IPMI_under_Linux_using_ipmitool
https://github.com/ColinIanKing/stress-ng
https://github.com/esnet/iperf
https://github.com/axboe/fio

A.3 Installation

A.3 Installation

To execute the framework, all software and hardware requirements must be met. Once

the required software is installed, the framework can be executed. The framework must be

executed with root access. Therefore, the power monitoring software and the benchmarking

tools should be installed globally.

A.4 Experiment workflow

The experiments are executed successively. Before the experiment is executed, all neces-

sary resources are created. During each experiment run various metrics are collected and

stored. After the experiment completed, the resources are released again. Therefore, each

experiment run is executed under the same conditions.

A.5 Evaluation and expected results

After the benchmark was executed and the framework terminates, a new folder including

the results should have been added in the /results directory. This folder contains one .csv

file per experiment. This .csv file includes the raw data collected during the experiment

run. Additional, a folder called /cleaned should contain the cleaned and processed data

and the plots of the experiment.

A.6 Experiment customization

The experiment suit can easily be extended. To add experiments to the suit, one simply

needs to add a shell script in the /results folder of the project. The name of the file is

utilized as an identifier and should be unique. The script should run on it’s own and it

should be executable by the root user.

65

Appendix B

Benchmark Suite

Name Description Related category

Idle No workload on the system All
CPU_STATIC Stress all CPUs 100 % for 30s CPU
CPU_ALL_50 Stress half of all CPUs 100 % for 30s CPU
CPU_HALF_100 Stress all CPUs 50 % for 30s CPU
CPU_LINEAR Linearly increase the CPU load CPU

MEM_STATIC
Random read and write operations
on up to 75% of the memory for 30s Memory

MEM_READ Read operation on up to
75% of the available memory for 30s Memory

MEM_WRITE
Write operation on up to
75% of the available memory for 30s Memory

NETWORK_STATIC Send and receive operations for 30s Network
NETWORK_SEND Send operation for 30s Network
NETWORK_RECEIVE Receive operation for 30s Network
STORAGE_STATIC Mixed read and write operations for 30s Storage
STORAGE_READ Read operation on storage for 30s Storage
STORAGE_WRITE Write operation on storage for 30s Storage
LATENCY Oscillating CPU load for 30s Tools
STABILITY Idle workload for 300s Tools

Table B.1: Complete list of all benchmark experiments.

67

Appendix C

Additional Experiments

1 from Netio import Netio
2

3 granularity_values = [0, 0.001, 0.001 , 0.01, 0.1, 1]
4 errors = []
5

6 for i in granularity_values:
7 errors.append(test_granularity(i))
8

9 def test_granularity(granularity):
10 PDU_L , PDU_R = setup_PDU ()
11

12 measurements_counter = 0
13 error_counter = 0
14

15 while measurements_counter < 100:
16 measurements_counter ++
17 try:
18 read_PDU(PDU_L , PDU_R)
19 except:
20 error_counter ++
21 sleep granularity;
22 return error_counter

Listing C.1: Granularity test for Netio PowerPDUs

Listing C.1 presents the source code for the granularity benchmark experiment on the

Netio PowerPDU. The execution of the benchmark experiment on the other power mon-

itoring tools follows the same structure. The source code for all granularity benchmark

experiments can be found in the granularity.py in the BenchFrame source code. The

69

C. ADDITIONAL EXPERIMENTS

granularity experiments are executed after the benchmark experiments or can be run sep-

arately.

70

Appendix D

Measurement Results

Granularity None RAPL Redfish PowerPDU

0 0.0001136 0.0096288 8.049786 15.1624612
0.001 0.1077604 0.1436108 12.3605434 15.2656308
0.01 1.0111004 1.06763080 10.6432328 16.112618
0.05 5.0111864 5.07535940 15.7635772 20.0437378
0.1 10.0162304 10.0788484 19.9849842 25.2603608

Table D.1: Monitoring granularity and execution speed of the tools compared to no mea-
surement.

71

	1 Introduction
	1.1 Problem Statements
	1.2 Research Questions
	1.3 Research Methodology
	1.4 Thesis Contributions
	1.5 Plagiarism Declaration
	1.6 Thesis Structure

	2 Background
	2.1 External Power Management
	2.2 Internal Power Management

	3 Design of a Power-Benchmarking Framework
	3.1 Power-Benchmarking Framework
	3.1.1 Design Requirements
	3.1.2 Design Concept

	3.2 Monitoring Metrics
	3.2.1 Requirements
	3.2.2 Tool Selection

	3.3 Benchmarking Tools
	3.3.1 System Components
	3.3.2 Requirements
	3.3.3 Tool Selection

	4 BenchFrame – Power-Benchmarking Framework
	4.1 Orchestration Process
	4.2 Monitoring Process
	4.3 Benchmark Scripts

	5 Benchmark Design
	5.1 Evaluation Objectives
	5.2 Experiment Design
	5.2.1 CPU Benchmarks
	5.2.2 Memory Benchmarks
	5.2.3 Network Benchmarks
	5.2.4 Storage Benchmarks
	5.2.5 Tool Benchmarks

	5.3 System Setup
	5.4 Benchmark Methodology

	6 Evaluation
	6.1 Static Evaluation
	6.2 Component Workload Evaluation
	6.3 Usability Evaluation
	6.4 Conclusion

	7 Related Work
	7.1 Power Monitoring Tools
	7.2 Benchmarking

	8 Conclusion
	8.1 Answering Research Questions
	8.2 Threats to Validity
	8.3 Future Work

	References
	A Reproducibility
	A.1 Artifact check-list (meta-information)
	A.2 Description
	A.2.1 How to access
	A.2.2 Hardware dependencies
	A.2.3 Software dependencies

	A.3 Installation
	A.4 Experiment workflow
	A.5 Evaluation and expected results
	A.6 Experiment customization

	B Benchmark Suite
	C Additional Experiments
	D Measurement Results

