
Vrije Universiteit Amsterdam

Master Thesis

A Reproducible Energy Benchmarking
Framework for Big Data Workloads

Author: Zhuoran Song (2803207)

1st supervisor: Daniele Bonetta
daily supervisor: Matthijs Jansen
2nd reader: Tiziano De Matteis

A thesis submitted in fulfillment of the requirements for
the VU Master of Science degree in Computer Science

July 18, 2025

ii

Abstract

With the rising adoption of cloud-native analytics engines like Apache Spark,

the energy implications of large-scale data analytics have drawn increasing at-

tention (25). However, existing measurement practices often lack reproducibil-

ity, fine-grained visibility, and scalability (30), limiting our understanding of

how workloads consume energy under different configurations.

This thesis presents the design and implementation of an automated framework

for energy characterization of big data workloads. The framework integrates

host-level power monitoring (via Scaphandre), virtualization management (via

QEMU and Continuum), and a custom characterization pipeline to automate

workload execution, metric collection, and power-phase analysis.

We validate the framework using SparkPi and apply it to the TPC-DS bench-

mark, performing a systematic characterization across five scaling scenarios.

Our results reveal that query complexity has a stronger influence on instanta-

neous power draw than resource scaling and that increasing parallelism yields

diminishing returns in energy efficiency beyond a certain threshold. These find-

ings demonstrate the framework’s ability to generate reproducible insights for

energy-aware system design and workload planning.

Keywords: Energy efficiency; Spark; Kubernetes; Benchmarking; Big data;

Power measurement; TPC-DS; Scaphandre; Virtualization

Contents

1 Introduction 1

1.1 Context . 2

1.2 Problem Statement . 3

1.3 Research Questions . 4

1.4 Research Methodology . 4

1.5 Thesis Contributions . 5

1.6 Plagiarism Declaration . 6

1.7 Thesis Structure . 6

2 Background 8

2.1 Reproducible Deployment with Continuum 8

2.2 Energy Monitoring with Scaphandre . 8

2.3 Benchmarking Targets: From Synthetic to Realistic Workloads 9

3 Design of the Energy Benchmarking Framework 10

3.1 Design Requirements . 11

3.1.1 Functional Requirements (FQ) . 11

3.1.2 Non-Functional Requirements (NFQ) 11

3.2 System Overview . 12

3.3 System Architecture and Monitoring Pipeline 13

3.4 Automated Benchmark Workflow and Execution Control 15

3.5 Benchmark Construction and Workload Characterization 16

3.5.1 Design of Resource Configuration Parameters 17

3.5.2 Systematic Query Selection Strategy 17

i

CONTENTS

4 Implementation 19

4.1 VM Setup . 20

4.2 Energy Monitoring . 20

4.3 Benchmarking Pipeline . 21

4.4 Data Post-processing and Visualisation . 22

4.5 Data Volume Mounting and Hive Integration 23

5 SparkPi-based Energy Measurement Validation 25

5.1 Experimental Setup . 25

5.1.1 Software Stack . 26

5.2 Measurement Pipeline . 26

5.3 Objective and Rationale . 28

5.4 Experiment Design & Results . 28

5.5 Takeaway . 29

6 Evaluation 34

6.1 Experimental Setup (for TPC-DS Experiments) 35

6.2 Type 1: Strong Scaling — Does increasing computing resources always lead

to better energy efficiency? . 37

6.3 Type 2: Fixed Resources with Increasing Load — How does load intensity

affect energy behavior when system capacity is constrained? 40

6.4 Type 3: Weak Scaling — Does parallelization help maintain energy efficiency

as workloads grow? . 43

6.5 Type 4: Fixed Total Load, Split Across Workers — Can distributing a fixed

workload across more workers reduce energy usage? 47

6.6 Workload-Specific Energy Insights . 48

6.6.1 Total Energy Consumption and Phase Breakdown 50

6.6.2 Power Behavior over Time . 53

6.6.3 Insights and Practical Takeaways . 54

6.7 Threat to Validity . 55

7 Related Work 57

7.1 Energy Monitoring Techniques in Virtualized and Containerized Environments 57

7.2 Energy Behavior of Spark Workloads . 58

7.3 Gaps in Reproducible Benchmarking Frameworks 58

ii

CONTENTS

8 Lessons Learned 60

8.1 Spark Environment Configuration is Nontrivial and Error-prone 60

8.2 Misassumptions About Scaphandre’s Capabilities Delayed Progress 61

8.3 Continuum VM Failures Require Full Rebuilds—Robust Initialization is

Crucial . 61

9 Conclusion 63

9.1 RQ1: How can a scalable and reproducible framework be designed to mea-

sure the energy consumption of Spark-based big data workloads running on

Kubernetes? . 63

9.2 RQ2: What benchmark workloads and configuration parameters can be

selected to meaningfully characterize the diversity of energy behaviors in

such systems? . 64

9.3 RQ3: What practical insights can be derived from energy measurement

experiments to support more sustainable design and deployment of data-

intensive systems? . 65

9.4 Future Work . 66

A Reproducibility 67

A.1 Abstract . 67

A.2 Artifact check-list (meta-information) . 67

A.3 Description . 68

A.3.1 How to access . 68

A.3.2 Hardware dependencies . 68

A.3.3 Software dependencies . 68

A.3.4 Data sets . 69

A.3.5 Models . 69

A.4 Installation . 69

A.5 Experiment workflow . 69

A.6 Evaluation and expected results . 70

A.7 Experiment customization . 70

A.8 Notes . 70

A.9 Methodology . 71

References 72

iii

1

Introduction

In today’s world, decisions are increasingly based on data. Digital infrastructure is no

longer just a support system—it is now the core of modern economies and science (28).

Like the railways of the industrial age or the electricity grids of the 20th century, today’s

cloud-native systems power critical operations across finance, healthcare, manufacturing,

and research (6). This transformation is primarily driven by the rapid expansion of ar-

tificial intelligence (AI), big data analytics, and cloud computing (17). As more data is

processed and stored, the demand for computing power rises sharply. According to the

International Energy Agency (IEA), electricity use by data centers will more than double

by 2030—reaching an estimated 945 terawatt-hours (TWh), up from 415 TWh in 2024.

Most of this increase comes from the rapid use of AI, with the United States and China

expected to account for nearly 80% of global data center energy consumption (17).

However, this wide-scale digital expansion brings a serious challenge: the energy cost of

our digital habits. As people become more aware of environmental and energy constraints,

the need to build systems that are not only fast or scalable—but also energy-efficient—has

become more urgent (5).

Among these systems, big data processing platforms occupy a central role. These plat-

forms are responsible for extracting insights from massive datasets and are widely used in

industries ranging from finance to scientific research. As such, their energy consumption

significantly contributes to the overall footprint of digital infrastructure (17).

In response, several sustainability programs have emerged. One prominent initiative is

the Climate Neutral Data Centre Pact, a voluntary agreement supported by the European

Commission (29). It commits members to targets such as improving energy efficiency,

using carbon-free energy, saving water, and recycling equipment, with the ultimate goal of

achieving carbon neutrality by 2030.

1

1.1 Context

Despite this shift in awareness, most research in distributed systems still focuses on

latency, system throughput, or security. The energy consumption of these systems is often

overlooked (9). This is a surprising omission—systems that appear optimized in terms

of performance may still consume excessive energy due to hidden inefficiencies in their

architecture or automation.

Distributed data processing engines like Apache Spark have shown strong scalability and

performance, making them popular for big data analytics. Apache Spark, in particular,

is one of the most widely adopted big data frameworks in both industry and academia

(30). However, their energy behaviour in real-world, container-based deployments remains

poorly understood (25, 30). To address this knowledge gap, we must characterize how

such systems consume energy under different deployment configurations—capturing how

workload type, resource allocation, and runtime dynamics jointly influence energy usage

(23). Identifying these patterns helps reveal hidden inefficiencies and trade-offs otherwise

masked by conventional performance metrics.

Characterizing energy behaviour contributes to technical optimization and informs

broader efforts to align digital infrastructure with sustainability goals. Given the growing

reliance on data-intensive computing in sectors such as finance, healthcare, and scientific

research, improving the energy efficiency of big data systems can support long-term re-

source stewardship without compromising computational capability (5).

This study presents a framework to address this gap by evaluating the energy behavior

of big data workloads under different deployment configurations. We develop and validate

a framework using Apache Spark as a representative system. Through this approach, the

study aims to provide tools and insights that support the design of more energy-efficient

data processing infrastructures.

1.1 Context

Although sustainability goals are increasingly emphasized at the policy level, energy visibil-

ity in real-world data processing systems remains limited. Platforms like Apache Spark are

engineered for large-scale performance and throughput but offer limited built-in support

for energy awareness (30). Existing monitoring tools often rely on coarse-grained metrics

such as CPU utilization or execution time, which, while useful for performance diagnostics,

do not fully capture the nuances of actual energy consumption (25, 30). Relying solely

on these proxies can obscure hidden inefficiencies—systems may appear well-optimized in

terms of throughput while still incurring unnecessary power costs.

2

1.2 Problem Statement

The widespread use of containerization and virtualization technologies amplifies this

challenge. These layers introduce an abstraction that complicates access to hardware-level

telemetry and obscures the energy behavior of distributed workloads (2). As a result,

system-level energy costs remain poorly characterized in practice.

To address this, emerging tools such as Scaphandre (14) attempt to bridge the observ-

ability gap. Scaphandre is an open-source exporter designed for integration with observ-

ability stacks like Prometheus and Grafana (7, 14). It leverages Intel’s RAPL (Running

Average Power Limit) interface—a hardware-level feature that estimates energy usage for

CPU sockets and DRAM (13)—to collect power-related metrics at fine granularity. How-

ever, its application in real-world big data systems remains limited, and few studies have

systematically evaluated its performance under diverse deployment scenarios.

1.2 Problem Statement

While the energy footprint of data-intensive systems is gaining attention, our understand-

ing of how modern big data platforms behave in terms of power consumption—especially

under containerized deployment—is still limited.

This thesis focuses on characterizing the energy use of Spark-based big data workloads de-

ployed on Kubernetes.It aims to explore how deployment configurations—such as executor

count, resource allocation (CPU and memory), and workload distribution—affect energy

usage and how tools like Scaphandre—a RAPL-based energy monitoring exporter—can

reliably capture power consumption.

Main Problem: There is a lack of a robust, modular, and reproducible framework for

characterizing and evaluating the energy consumption of big data workloads, particularly

those deployed using platforms like Apache Spark within containerized and virtualized

environments.

While awareness of energy concerns is increasing, several practical and methodological

challenges remain unresolved. First, energy monitoring tools are often difficult to inte-

grate into modern big data systems and rarely offer the granularity needed to observe

container-level behavior. Second, the absence of standardized benchmarks and configura-

tion guidelines limits our ability to design meaningful energy-aware experiments. Finally,

even when energy data is collected, it is seldom translated into actionable insights that can

inform sustainable deployment strategies. These issues create friction at multiple points

in the energy analysis workflow—from measurement to interpretation to application.

3

1.3 Research Questions

1.3 Research Questions

This thesis formulates the following research questions to address the main and sub-

problems outlined above. These questions guide the conceptual design of the energy mea-

surement framework, the selection and execution of representative experiments, and the

interpretation of results to extract actionable insights.

• RQ1: How can a scalable and reproducible framework be designed to measure the

energy consumption of Spark-based big data workloads running on Kubernetes?

• RQ2: What benchmark workloads and configuration parameters can be selected to

meaningfully characterize the diversity of energy behaviors in such systems?

• RQ3: What practical insights can be derived from energy measurement experiments

to support more sustainable design and deployment of data-intensive systems?

1.4 Research Methodology

This thesis follows a design-and-evaluation methodology composed of three stages. Each

stage reflects a set of design choices guided by the goal of enabling reproducible and fine-

grained energy analysis in containerized big data environments.

Framework Design: We designed a framework to capture the energy consumption of

Spark-based big data workloads running on Kubernetes clusters within virtual machines.

Apache Spark is chosen as the core data processing engine due to its widespread adoption

in both academic and industrial big data pipelines (30). Kubernetes provides the orches-

tration layer, reflecting modern containerized deployment practices in production-grade

environments.

To ensure accurate power monitoring, this study integrates Scaphandre (14), an RAPL-

based, open-source energy monitoring tool that exposes low-level power metrics. Scaphan-

dre was selected after surveying available monitoring solutions based on its ability to pro-

vide continuous, fine-grained energy data with minimal system overhead (12). A sharing

mechanism is implemented to propagate host-level RAPL metrics into the virtualized en-

vironment, allowing energy measurement without disrupting container isolation. Scaphan-

dre’s metrics are scraped by Prometheus, which serves as the central time-series collector

for structured energy data (22).

4

1.5 Thesis Contributions

A preliminary validation is performed using the SparkPi example (3) to test automation

stability and verify that the collected energy data reflects expected workload behavior.

This step ensures measurement correctness before scaling to more complex benchmarks.

Benchmark Design and Execution: We use TPC-DS as the primary benchmarking

suite due to its realistic and diverse SQL-based business analytics queries, making it well-

suited for evaluating energy behavior under different system configurations. Details of

benchmark selection rationale, query profiling, and configuration design are presented in

Chapter 3.5.

Analysis and Insight Extraction: Energy-related metrics collected by Prometheus

are exported as structured time-series data. These metrics are then parsed and aggregated

using custom Python scripts to compute total energy consumption per workload run. Vi-

sualization is performed using Matplotlib (15), focusing on comparative plots that reveal

energy-performance trade-offs across configurations. This offline analysis strategy supports

reproducibility and allows flexible integration with other experimental data without relying

on a live dashboard.

1.5 Thesis Contributions

This thesis delivers several concrete contributions to energy-aware big data computing by

answering the above research questions. These contributions are relevant to researchers

investigating energy-performance trade-offs and practitioners designing scalable and sus-

tainable data systems.

• Design of a Measurement Framework: We design a reusable and automated

framework for evaluating the energy consumption of big data workloads using Apache

Spark, adaptable to containerized and virtualized Kubernetes environments (see

Chapter 3). The framework provides a modular foundation for energy profiling

in distributed data systems and can be extended to other frameworks beyond Spark.

• Benchmark Selection and Evaluation: We construct a curated set of benchmark-

derived workloads—primarily selected TPC-DS queries—that reflect real-world an-

alytics scenarios (see Section 3.5). These workloads are evaluated across diverse

cluster configurations to uncover energy-performance relationships (see Chapter 6).

The benchmark matrix captures a range of operational patterns, including strong and

weak scaling, resource saturation, and query-level variation, enabling standardized

cross-scenario comparisons of energy efficiency.

5

1.6 Plagiarism Declaration

• Execution and Practical Implications: We conduct a comprehensive evaluation

using the developed framework, running Spark workloads under varied deployment

configurations (see Chapter 6). The results show that energy consumption is not al-

ways proportional to workload size or resource scale. For instance, over-fragmentation

of executors or high shuffle loads in complex queries can result in significant energy

overhead with limited performance benefits. These empirical insights underscore the

importance of fine-tuning both system parameters and query plans when optimizing

for sustainability.

1.6 Plagiarism Declaration

I hereby declare that this thesis is entirely my work, has not been copied from any other

source (including individuals, online materials, or AI tools), and has not been submitted

for evaluation elsewhere.

For details on VU Amsterdam’s plagiarism policy, please refer to:

https://vu.nl/en/about-vu/more-about/academic-integrity

1.7 Thesis Structure

This thesis is structured as follows:

1. Introduction. Introduces the research context, problem statement, research ques-

tions, methodology, contributions, and outlines the thesis structure.

2. Background. Reviews foundational concepts including reproducible deployment

with Continuum, energy monitoring with Scaphandre, and an overview of bench-

marking targets.

3. Design of the Energy Benchmarking Framework. Details the design require-

ments, system architecture, automated workflow, and the systematic construction of

benchmark workloads and resource configurations.

4. Implementation. Describes the technical implementation of the framework, in-

cluding VM setup, energy monitoring integration, benchmarking pipeline, and data

processing methods.

6

1.7 Thesis Structure

5. SparkPi-based Energy Measurement Validation. Presents validation experi-

ments using the SparkPi workload to test the framework’s stability, accuracy, and

responsiveness under controlled settings.

6. Evaluation. Provides a systematic evaluation of TPC-DS workloads under diverse

scaling configurations, analyzing energy consumption patterns and deriving insights

to answer the research questions.

7. Related Work. Reviews existing literature on energy monitoring methods, Spark

workload characterization, and benchmarking frameworks, and highlights how this

thesis addresses their limitations.

8. Lessons Learned. Reflects on practical challenges and key learnings encountered

during framework development and experimentation.

9. Conclusion. Summarizes the thesis findings, explicitly answers the research ques-

tions, discusses limitations, and suggests directions for future work.

7

2

Background

This chapter introduces the technical context and key components that form the foundation

of our energy measurement framework. We focus on three elements: (1) an automation

toolkit for reproducible deployment, (2) the energy telemetry tool used for power measure-

ment, and (3) the benchmarking workloads used to evaluate energy behavior in big data

systems. The purpose of this chapter is to provide conceptual background rather than

implementation specifics. Details of the experimental setup appear in later chapters.

2.1 Reproducible Deployment with Continuum

Continuum (18) is an open-source automation framework designed to support reproducible

cloud-like environments for systems research. It allows users to define and provision multi-

node virtual infrastructures through simple configuration files. The generated VMs are

compatible with QEMU/KVM and can be automatically integrated with orchestration

platforms such as Kubernetes.

For our purposes, Continuum provides a consistent foundation to deploy container-based

big data environments in a virtualized setting. Its extensibility also allows for customiza-

tion, such as integrating monitoring agents or mounting telemetry data across VMs, which

is essential for reliable energy profiling.

2.2 Energy Monitoring with Scaphandre

Energy consumption in virtualized systems is difficult to observe directly due to abstraction

layers between the physical host and containerized applications. To address this, we use

Scaphandre (14), a telemetry agent that exposes power metrics based on Intel’s Running

Average Power Limit (RAPL) interface.

8

2.3 Benchmarking Targets: From Synthetic to Realistic Workloads

Scaphandre provides access to cumulative energy readings for CPU and DRAM domains

and supports integration with observability stacks such as Prometheus. While real-time

power metrics are theoretically available, they are often unreliable in guest operating sys-

tems and are used cautiously in this study. The focus remains on energy consumption as

the primary metric of interest.

2.3 Benchmarking Targets: From Synthetic to Realistic
Workloads

Two types of workloads are used to evaluate the measurement framework. The first is

SparkPi (3), a deterministic CPU-intensive computation that estimates π using Monte

Carlo methods. This workload serves as a lightweight validation tool to test measurement

consistency and scaling sensitivity in a controlled setting.

The second and primary benchmark suite is TPC-DS (1), a widely used standard for

evaluating the performance of decision support systems. TPC-DS includes a variety of

SQL queries with diverse computational characteristics, reflecting real-world scenarios in

business analytics. Its use enables a systematic study of how system configurations and

workload patterns influence energy behavior in distributed processing environments.

9

3

Design of the Energy Benchmarking
Framework

This chapter addresses RQ1 — How can a scalable and reproducible framework be

designed to measure the energy consumption of Spark-based big data workloads

running on Kubernetes? by detailing the design of a modular and traceable benchmark-

ing architecture. The primary focus of this thesis lies in measuring and analyzing energy

and power consumption patterns of TPC-DS workloads under varied Spark-on-Kubernetes

configurations.

So, we designed a complete system architecture to support these experiments. The frame-

work integrates multiple subsystems—including Apache Spark, Kubernetes, QEMU-based

virtual machines, and the Scaphandre energy monitoring tool—into a coherent pipeline for

data generation, table creation, and query execution. The system operates within a con-

trolled virtualized environment designed to ensure consistency, isolation, and reproducibil-

ity across experiments. Validation of the measurement pipeline is described in Chapter 5.

The remainder of this chapter is organized as follows:

Section 3.1 outlines the functional and non-functional requirements that guide the

system design;

Section 3.2 presents a high-level overview of the system setup and virtualization envi-

ronment;

Section 3.3 explains the architecture and monitoring pipeline, including how energy

data is collected and aligned with execution phases;

Section 3.4 describes the automated workflow for running experiments, logging work-

load phases, and generating visual outputs.

10

3.1 Design Requirements

Section 3.5 presents the experimental design, outlining the resource scaling strategies

and query selection criteria used to systematically evaluate energy behavior across a range

of representative big data workloads.

3.1 Design Requirements

To ensure the benchmarking framework fulfills its intended purpose—analyzing the energy

and power behavior of Spark-on-Kubernetes workloads—we identify both functional and

non-functional requirements that guide the system design.

3.1.1 Functional Requirements (FQ)

• FQ1: To understand how different deployment choices influence energy usage, the

system must allow automated submission of Spark jobs under varied configura-

tions—such as scale factors, instance counts, and resource settings.

• FQ2: Since this study aims to correlate execution behavior with energy patterns,

the system must capture power and energy metrics at fine temporal granularity

throughout each workload run.

• FQ3: Energy consumption cannot be properly interpreted without knowing what

the system is doing at each moment. Therefore, the system must distinguish and

timestamp execution phases such as data generation, metadata setup, and query

execution.

• FQ4: To reduce post-processing overhead and ensure consistent analysis, the frame-

work should generate power-over-time plots and per-phase energy charts automati-

cally from raw data.

3.1.2 Non-Functional Requirements (NFQ)

• NFQ1: Experiments should be easy to deploy and repeat. To that end, the system

must integrate with the Continuum framework, which handles VM provisioning and

configuration in a reproducible way.

• NFQ2: Energy results are only meaningful if they can be reliably repeated. There-

fore, the setup should produce stable output across trials with minimal sensitivity to

noise or interference.

11

3.2 System Overview

• NFQ3: For long-term maintainability and flexibility, the system architecture must

be modular—each component should have a clearly defined responsibility and inter-

face.

3.2 System Overview

The energy benchmarking framework is deployed within a virtualized environment hosted

on a single physical server. Due to hardware resource constraints and the need for rapid ex-

perimentation, the system is intentionally kept minimal by deploying only two virtual ma-

chines. These QEMU-based virtual machines (VMs) are provisioned and configured using

the Continuum automation framework. Since the goal of this study is to analyze energy and

power consumption patterns—not to evaluate scalability or large-cluster performance—the

simplified setup suffices for our purposes. To emulate a realistic container-based deploy-

ment while maintaining observability and control, we adopt a Spark-on-Kubernetes archi-

tecture within virtual machines rather than using a local or monolithic Spark setup.

Based on these experimental considerations, we designed the system architecture as

shown in Figure 3.1, which benchmarks TPC-DS workloads under various Spark configu-

rations. The architecture is organized into three primary layers:

• Host Layer: A physical machine runs the experiment environment and hosts all

virtual machines. The energy monitoring tool Scaphandre is deployed at this level to

collect system-wide power and energy data via Intel RAPL. Deploying Scaphandre

directly on the host avoids virtualization-induced inaccuracies and provides consistent

access to low-level power counters, addressing FQ2.

• Virtualization Layer: Two QEMU-based VMs are configured via the Continuum

framework. One VM serves as the Kubernetes controller node, while the other is the

worker node where Spark tasks are executed. This separation allows for container or-

chestration without interference from control plane activity, ensuring that all energy

measurements reflect only the compute workload (FQ2, NFQ2).

• Container Orchestration Layer: Within the worker VM, Kubernetes schedules

and launches Spark driver and executor pods. The driver pod manages task orches-

tration, while the executor pods carry out the actual computation. These pods exe-

cute TPC-DS SQL queries under different configurations using a fixed 10GB dataset

that is generated and prepared only once before all experiments. Running Spark

12

3.3 System Architecture and Monitoring Pipeline

Host Layer

Physical Host

Scaphandre(Scaphandre monitors host-level
energy consumption (including all VMs))

Virtualization & Cluster
Layer

Controller VM Worker VM & Storage
Folder

Task scheduling,
coordination Execute

Kubernetes Cluster (Deployed on Two VMs)

Application Layer
pod

Driver Pod Executor Pods

Executes benchmark workload
Spark pods are deployed only in the Worker VM (executor & driver)

...

Schedules
and Starts

TPCDS Tasks
Execute

Runs QEMU-
based VMs

Forms K8s cluster &
runs Spark Pods

RAPL
Interface

Allocate and read energy_uj（Based on
RAPL and CPU Usage ratio）

virtiofsd-based Mount
Folder(Include energy

data, dataset, event logs)

Figure 3.1: Overall architecture of the energy benchmarking framework for TPC-DS work-
loads on Spark-on-Kubernetes.

on Kubernetes reflects current best practices in cloud-native analytics systems and

enables controlled manipulation of resource allocations at the pod level, satisfying

FQ1 and FQ3.

This layered architecture ensures modularity and allows fine-grained observation of work-

load behaviors while enabling energy consumption measurement at the host level.

3.3 System Architecture and Monitoring Pipeline

To meet the needs for accurate energy monitoring (FQ2), phase-aware execution tracking

(FQ3), and modular system design (NFQ3), we built a monitoring pipeline that is sepa-

rated from the workload orchestration logic. This separation improves maintainability and

13

3.3 System Architecture and Monitoring Pipeline

makes it easier to isolate potential measurement errors without interfering with workload

execution.

At the core of our monitoring setup is Scaphandre(as shown in the Scaphandre compo-

nent of Figure 3.1), a lightweight tool that reads power consumption metrics from Intel’s

Running Average Power Limit (RAPL) counters at the hardware level. These counters

provide fine-grained energy data in microjoules for processor packages, cores, and DRAM.

Scaphandre was selected for its minimal overhead, compatibility with virtualized environ-

ments, and ability to expose structured metrics suitable for time-series collection.

To associate energy data with each virtual machine (VM), we adopt a virtiofsd-based

mount—QEMU’s standard mechanism for sharing files between host and guest. During

VM creation, the Continuum framework automatically sets up this mount, making each

VM’s energy trace accessible under /var/lib/libvirt/scaphandre/ on the host(As shown

in the Folder component of Figure 3.1). Inside this directory, each VM maintains an

energy_uj file that updates in real-time as the VM runs. Our benchmark script samples

this file periodically to build a continuous energy trace. This host-side mounting approach

avoids intrusive instrumentation within the guest VMs while retaining accurate per-VM

attribution.

To track execution behavior, we leverage Spark’s built-in event logging system(As shown

in the Folder component of Figure 3.1). During each query execution, event logs are

collected to mark task boundaries and job progression. These logs are later used to segment

the workload into sub-phases (e.g., initialization, shuffle, aggregation), which are then

aligned with the corresponding energy trace. This structured logging method allows fine-

grained temporal correlation without modifying application code or disrupting Spark’s

runtime behavior.

All energy and timing data are saved in raw form to ensure transparency and repro-

ducibility. Post-processing scripts later align execution phases with energy readings, calcu-

late total and per-phase energy consumption, and generate visual outputs such as power-

over-time curves and energy bar charts. This analysis supports FQ4 by enabling consistent

and automated interpretation of the measured data.

To meet the modularity goal (NFQ3), we split the system into three parts: (1) the

workload scheduler, (2) the energy sampler, and (3) the visualization module. Each part

has clear inputs and outputs and can be modified or reused without affecting the rest of

the system.

The workload scheduler controls the automated execution of Spark jobs, including param-

eter configuration, resource assignment, and phase tracking. The energy sampler handles

14

3.4 Automated Benchmark Workflow and Execution Control

periodic readings of the energy trace files exposed by Scaphandre and logs energy values

throughout the experiment. The visualization module processes raw data and timestamps

to generate figures such as power-over-time curves and segmented energy bar charts.

This modular design improves the framework’s extensibility and maintainability, making

it easier to debug, upgrade, or replace individual components when needed.

3.4 Automated Benchmark Workflow and Execution Control

We develop a benchmark workflow that runs seamlessly from start to finish with minimal

manual intervention. This design enables efficient testing across a range of workload con-

figurations while ensuring that each run is consistent and repeatable. It directly addresses

requirements FQ1, FQ4, NFQ1, and NFQ2.

The workflow is driven by a set of predefined experiment configurations, each specifying

parameters such as query identity, resource allocation, and instance count.1 These con-

figurations are automatically executed in sequence, allowing for controlled variation and

batch experimentation.

Before launching a workload, the system performs an idle check to ensure that the host is

in a thermally and computationally stable state. This precaution minimizes the influence

of residual processes or temperature artifacts from previous runs. Each experiment focuses

solely on the query execution stage, with input data and Hive metadata kept constant

across all trials. A timestamp is recorded at the start of each run to enable alignment

between execution phases and energy measurements.

During execution, Spark’s event logging is enabled to collect detailed runtime metadata.

These logs include time-resolved records of job and stage execution, which later support a

fine-grained breakdown of query behavior.

After all experiments are complete, a post-processing module analyzes the collected

logs and energy traces to construct energy profiles for each configuration. This analysis

produces visualizations such as power-over-time curves and segmented energy bar charts.

Results are systematically organized to facilitate comparison across experiments and pa-

rameter settings.As summarized in Algorithm 1, the entire workflow follows a structured

and repeatable sequence—from idle checks and Spark job submission to energy monitoring

and final analysis.
1All experiments share a common pre-generated dataset of 10GB scale. Data generation and metadata

setup are performed only once, prior to the benchmark phase.

15

3.5 Benchmark Construction and Workload Characterization

Algorithm 1: Execution Workflow for Benchmark Runs
Input: List of experiment configurations
Output: Organized energy profiles and visualizations

1 foreach configuration in the list do
2 if Host is not idle then
3 Wait until CPU and temperature stabilize;

4 Launch Spark job with specified parameters;
5 Record start timestamp for query phase;
6 Enable Spark event logging;
7 Monitor energy via Scaphandre during execution;
8 if Experiment completes then
9 Save energy trace and event logs;

10 Run post-processing to match logs with energy traces;
11 Generate visualizations (e.g., power curves, energy charts);
12 Organize results by configuration for comparison;

3.5 Benchmark Construction and Workload Characteriza-
tion

This section contributes to addressing RQ2 — What benchmark workloads and con-

figuration parameters can be selected to meaningfully characterize the diversity

of energy behaviors in such systems? by detailing the systematic design of benchmark

workloads and resource configurations used in this study.

To systematically characterize the energy behavior of big data workloads, we base our ex-

periments on the TPC-DS benchmark suite. TPC-DS is widely recognized as an industry-

standard decision support benchmark, designed to model complex business analytics sce-

narios with realistic schema structures, diverse query types, and varying data access pat-

terns (1). Compared to alternatives such as BigBench (8) or HiBench (16), TPC-DS offers

a richer set of SQL-based analytical queries that closely reflect production workloads in

modern data platforms, making it well-suited for evaluating both performance and energy

implications.

We adopt the open-source tool spark-data-generator 1 to generate both the synthetic

datasets and query templates in Spark-compatible format. However, the original imple-

mentation is tailored for large-scale clusters and is hardcoded to generate data starting
1https://github.com/sacheendra/spark-data-generator

16

https://github.com/sacheendra/spark-data-generator

3.5 Benchmark Construction and Workload Characterization

from 100 GB. To make the tool suitable for our controlled, small-cluster setup, we modify

the source code to support fine-grained scale factors (e.g., 1–10 GB) and enable configu-

ration injection via external scripts. These adjustments allow us to align data generation

with our resource constraints and experimental reproducibility goals.

In this study, a single 10GB dataset is generated and used throughout all experiments.

Table creation and Hive metadata setup are also performed once before the benchmark

phase. All subsequent experiments focus exclusively on the query execution stage using

this pre-generated data.

3.5.1 Design of Resource Configuration Parameters

Our experiment matrix is structured to test how energy consumption responds to changes in

resource allocation while keeping the dataset fixed. We design four types of configurations

that reflect different real-world scaling patterns:

• Type 1: Strong Scaling. The problem size is fixed, while the number of executors

or available cores is increased to test how energy changes with more resources.

• Type 2: Resource-Constrained Load Scaling. The resources remain constant,

but the complexity of query execution varies across different TPC-DS queries.

• Type 3: Weak Scaling. The workload and resources grow proportionally, simu-

lating a typical parallel scaling scenario.

• Type 4: Distribution Scaling. The total workload remains the same but is split

across a varying number of executors, allowing analysis of energy trade-offs in parallel

execution.

These configuration types were chosen to systematically cover scaling patterns com-

monly observed in big data clusters, ensuring the framework’s ability to characterize both

performance and energy implications under diverse deployment conditions.

3.5.2 Systematic Query Selection Strategy

To capture a broad spectrum of workload behaviors, we decided to select queries that not

only exhibit distinct computational characteristics but also maintain practical relevance,

ensuring coverage across common operation types such as I/O-intensive, compute-intensive,

and memory-intensive workloads. We first performed preliminary dry-run profiling on

all TPC-DS queries to evaluate their runtime, CPU utilization, memory consumption,

17

3.5 Benchmark Construction and Workload Characterization

and I/O intensity. Based on this analysis, we systematically selected the following four

representative queries from the TPC-DS suite:

• Q3: A lightweight and fast-running query with simple joins, used as a baseline to

validate energy trace responsiveness and pipeline correctness.

• Q5: A scan-heavy query with multiple joins. It is I/O-intensive and stresses storage

and network systems.

• Q18: A logic-heavy query involving subqueries and multi-table joins puts pressure

on the query planner and CPU.

• Q64: An OLAP-style query with heavy sorting and aggregation, often bottlenecked

by CPU and memory usage.

While this set does not exhaustively cover the entire TPC-DS workload space, it provides

a practical and representative cross-section sufficient for energy characterization in this

study.

18

4

Implementation

Building on the architectural design presented in Chapter 3, this chapter details the con-

crete implementation of the energy benchmarking framework for Spark-based big data

workloads on Kubernetes.

The implementation aims to satisfy the following system requirements: accurate host-

level energy monitoring (FQ2), phase-aware execution tracking (FQ3), and architectural

modularity (NFQ3). Based on these goals, we have built a fully automated benchmarking

pipeline that integrates workload submission, energy data collection, and visualization.

This chapter describes the implementation details of the following components:

• VM Setup: Extending the Continuum framework to automatically provision VMs

with customised configurations, including memory backing and virtiofsd-based di-

rectory mounting.

• Energy Monitoring: Deploying Scaphandre on the host machine to collect RAPL-

based energy metrics and using Prometheus-compatible exporters for data retrieval.

• Benchmarking Pipeline: Designing lightweight scripts to automate Spark job

submission, collect timestamps for workload phases, and associate them with corre-

sponding power data.

• Data Post-processing and Visualisation: Implementing mechanisms to process

raw energy data and visualise power-over-time curves and cumulative energy bars

across experiments.

19

4.1 VM Setup

4.1 VM Setup

We begin by preparing the infrastructure required for energy-aware benchmarking. The

virtual environment is provisioned using the Continuum framework, which automates the

deployment of QEMU-based virtual machines and their configurations. To support energy

telemetry, specific adjustments are made to enable data sharing between host and guest.

Following the recommendations of Scaphandre, we enable memoryBacking and set up

a shared file system via virtiofsd. These components allow telemetry output—such as

energy usage data stored in /var/lib/libvirt/scaphandre/ on the host—to be accessed

by the virtual machines through mounted directories (e.g., /var/scaphandre inside the

guest). This setup enables the collection of energy data externally while preserving VM

isolation.

To ensure repeatability and consistent regeneration of virtual machines, the inventory

system in Continuum has been updated to track VM states and include the necessary

virtiofsd settings during domain configuration.

All infrastructure provisioning is automated through Continuum’s domain generator,

which has been extended to include these telemetry-specific options. These adjustments

satisfy the non-functional requirement of modular deployability (NFR1), forming the foun-

dation for the subsequent monitoring and benchmarking components.

4.2 Energy Monitoring

To collect energy-related metrics during workload execution, we deploy version 1.0.0 of

the Scaphandre telemetry agent on the physical host machine. Scaphandre reads from

Intel’s Running Average Power Limit (RAPL) interface, which provides cumulative energy

data for processor packages, cores, and DRAM. This setup enables hardware-level energy

observation without being distorted by virtualisation artefacts.

In our implementation, we launch two parallel instances of Scaphandre: one us-

ing the qemu exporter and another using the prometheus exporter. The qemu ex-

porter writes cumulative energy values for each VM to individual telemetry files under

/var/lib/libvirt/scaphandre/. These files are accessed at the beginning and end of

each experiment run, and the energy consumed during the workload is computed by taking

the difference between the two readings. This simple delta calculation provides a reliable

estimate of per-experiment energy consumption without requiring continuous sampling.

20

4.3 Benchmarking Pipeline

The prometheus exporter, in contrast, runs as a lightweight HTTP server on port 8081.

It exposes host-wide power metrics—such as scaph_host_power_microwatts—in a

Prometheus-compatible format. Instead of running a full Prometheus service, we di-

rectly query this endpoint using simple HTTP requests (e.g., curlhttp://localhost:

8081/metrics) to retrieve real-time power data.

Since Scaphandre does not support in-VM instantaneous power readings, we estimate

the power usage attributable to each VM by combining two data sources: (1) the total

host power obtained from the prometheus exporter, and (2) per-VM CPU usage reported

by /proc/stat. This proportional attribution model enables the construction of power-

over-time curves for each workload, even though measurements are collected only at the

host level.

This monitoring setup fulfils the non-functional requirement of observability and repro-

ducibility (NFR2), as it allows both cumulative and real-time energy data to be collected

externally, processed reliably, and aligned with the execution phases of each experiment.

4.3 Benchmarking Pipeline

To enable consistent and reproducible experiments, we implement a lightweight bench-

marking pipeline in Python that automates workload execution, energy data collection,

and result processing. This pipeline coordinates the entire measurement cycle across mul-

tiple configurations, eliminating the need for manual intervention.

Each experiment begins by verifying system readiness. A pre-check ensures that the CPU

usage on the host is sufficiently low (e.g., above 95% idle), reducing noise from previous

jobs. Once idle conditions are met, the pipeline proceeds to launch a Spark workload

via Kubernetes, using a configurable set of parameters: number of instances, core count,

and memory per executor. All experiments are executed against a pre-generated 10GB

TPC-DS dataset and existing Hive metadata, both of which remain fixed throughout the

benchmark phase.

During each workload run, only the query execution stage is performed. Event logging is

enabled in Spark to capture detailed execution traces, which include timestamps for jobs

and stages. These logs are later parsed to extract fine-grained segments corresponding to

operations such as Scan, Join, or Aggregate, allowing for detailed energy attribution.

Energy data is collected from two sources: cumulative readings from Scaphandre’s qemu

exporter and real-time power metrics from the prometheus exporter. The cumulative

21

4.4 Data Post-processing and Visualisation

energy is read at the beginning and end of each workload run, while real-time power data

is pulled periodically by querying the exporter’s HTTP endpoint.

To derive the power profile of each workload phase, we estimate per-VM instantaneous

power based on the host’s measured power and the VM’s proportional CPU usage, obtained

via /proc/stat. Specifically, we compute the VM power at time t using the formula:

Pvm(t) = Phost(t)×
Cvm(t)

Chost(t)

Where Phost(t) is the power measured by Scaphandre, and Cvm(t) and Chost(t) represent

the CPU time deltas for the VM and the entire host respectively. Power values are then in-

terpolated and mapped to query job or stage windows defined by the event log timestamps.

This results in a fine-grained power-over-time curve aligned with the workload timeline.

After each experiment is completed, energy and log data are stored with filenames en-

coding the experiment configuration. Output plots—such as stacked bar charts and line

graphs—are generated for visual comparison. This automation enables large-scale experi-

ments to be executed and analyzed in a systematic and reproducible manner.

4.4 Data Post-processing and Visualisation

The final stage of the benchmarking pipeline is dedicated to processing the raw energy and

timestamp data collected during each experiment run. This post-processing step is imple-

mented as a standalone Python module and is invoked after the workload is completed.

It reads experiment-specific metadata—including workload parameters, phase timestamps,

and cumulative energy logs—and transforms them into structured visual outputs.

The energy consumption during each workload phase is calculated by interpolating power

values using the timestamp boundaries recorded during execution. The resulting data is

then visualised in two primary formats: (1) power-over-time line charts that show the

VM’s estimated power profile across different execution stages and (2) stacked bar charts

that compare cumulative energy consumption across experiments. All output plots are

saved using configuration-encoded filenames and stored in a structured directory layout to

facilitate batch comparisons.

While platforms such as Grafana are commonly used for real-time visualisation of

Prometheus-exported metrics, they are not well-suited for reproducible, file-based batch

analysis. Our experiments focus on offline benchmarking and comparative evaluation,

which require complete control over visual styling, axis scaling, and data segmentation. To

22

4.5 Data Volume Mounting and Hive Integration

Virtual Machine
 └── /tpcds-data/
 ├── metastore_db/
 ├── hive-warehouse/
 └── *.dat

Spark Driver Container Spark Executor Container
 └── /tpcds-data/ └── /tpcds-data/hostPath mount

Figure 4.1: Shared hostPath mounting of /tpcds-data within a virtual machine, enabling
consistent access to datasets, Hive metadata, and warehouse tables across Spark driver and
executor containers.

meet these needs, we adopt matplotlib as our visualisation backend, allowing for precise

formatting and a fully scripted generation of plots without any manual intervention.

This modular design ensures that visualisation remains decoupled from workload execu-

tion and can be independently reused or extended. As new benchmark configurations or

workloads are introduced, the same post-processing logic can be directly applied, reinforc-

ing the framework’s reproducibility and scalability.

4.5 Data Volume Mounting and Hive Integration

To enable seamless access to pre-generated TPC-DS datasets during Spark execution, we

implement a shared data volume mounting strategy within each virtual machine. Both the

Spark driver and executor containers run inside the same VM, and a local directory on the

VM—/tpcds-data—is mounted into each container using Kubernetes hostPath volumes.

This ensures that input data, metadata, and output tables are accessible via a consistent

file path across all workload phases.

This mounting setup supports all three benchmark stages—data generation, schema cre-

ation, and query execution—without requiring the duplication or copying of files between

pods. The directory /tpcds-data contains the generated flat files, the embedded Hive

metastore database, and the warehouse folder for structured tables. Figure 4.1 illustrates

the shared directory structure within the virtual machine environment.

To integrate Hive functionality within Spark, we explicitly set the following Spark con-

figurations:

• spark.sql.catalogImplementation=hive enables the use of Hive catalogue for ta-

ble management;

• spark.sql.warehouse.dir=/tpcds-data/hive-warehouse specifies the directory

for Hive-managed tables;

23

4.5 Data Volume Mounting and Hive Integration

• spark.hadoop.javax.jdo.option.ConnectionURL=jdbc:derby:;

databaseName=/tpcds-data/metastore_db;create=true

initializes an embedded Derby metastore under the shared directory.

All these configurations are passed programmatically via –conf parameters during job

submission. This approach eliminates the need for external storage solutions or distributed

file systems, ensuring full automation of environment setup. By unifying data, schema, and

catalogue into a single shared volume, the framework supports reproducible benchmarking

across multiple runs and configurations.

24

5

SparkPi-based Energy Measurement
Validation

This chapter presents the experimental validation of the proposed energy measurement

framework. To verify its stability and responsiveness, we conduct a set of controlled ex-

periments using SparkPi—a lightweight and deterministic workload—before applying the

framework to more complex real-world scenarios. This section details the experimental

environment and measurement workflow used in this validation phase.

5.1 Experimental Setup

The experiments were conducted on a physical server equipped with an Intel(R) Xeon(R)

Silver 4210 CPU @ 2.20GHz, featuring two sockets, 20 physical cores, and 20 threads. Two

virtual machines (VMs) were provisioned using the Continuum framework (18), which

supports automated QEMU-based VM configuration. One VM was designated as the

Kubernetes control plane, and the other as the worker node that exclusively executed all

Spark jobs.

Each virtual machine (VM) was allocated 10 virtual CPUs and 32GB of memory, pro-

visioned via QEMU/KVM full virtualization. The VMs use QEMU Virtual CPU version

2.5+, which emulates the host’s physical processor (Intel Xeon Silver 4210 @ 2.20GHz) in

a simplified virtual form. This setup enables the deployment of a fully isolated Spark clus-

ter within a virtualized environment, allowing repeatable experimentation and accurate

attribution of energy usage to individual VMs under controlled conditions (see Figure 5.1).

25

5.2 Measurement Pipeline

5.1.1 Software Stack

The software stack consisted of Apache Spark (Hadoop3, Version 3.4.4) deployed on a

Kubernetes cluster configured with one control plane and worker node. Spark jobs were

submitted in cluster mode using Kubernetes’ native k8s:// API endpoint. In cluster

mode, the Spark driver runs inside the Kubernetes cluster—typically as a Pod scheduled

alongside executors—rather than on the submission client. This approach ensures that all

components of the Spark application, including driver and executors, are containerized and

placed under Kubernetes resource control so that all parts of the Spark job stay inside the

monitored environment, making it possible to capture the full energy usage of each job.

Cluster mode also lets Kubernetes handle where to place the pods and how to allocate

resources, which helps keep the experiments consistent and isolated.

Energy monitoring was performed using Scaphandre v1.0.0 (12), an open-source exporter

designed to retrieve power consumption data from Intel’s RAPL interface (13). Scaphandre

was installed on the physical host and used in two modes simultaneously:

• The qemu exporter (11) exposed accumulated energy values (energy_uj) per VM by

sharing telemetry files via a virtual filesystem;

• The prometheus exporter (22) streamed instantaneous power metrics (e.g., scaph

_host_power_microwatts over HTTP, allowing continuous time-series collection.

Power data was queried periodically, and energy attribution to each VM was estimated

based on its proportional CPU usage. This dual-exporter setup enabled cumulative and

temporal energy tracking for Spark jobs inside the virtual cluster.

5.2 Measurement Pipeline

The measurement pipeline used throughout this thesis was originally developed for the

SparkPi validation experiments, where it was designed to automate cluster setup, workload

execution, energy monitoring, and result visualization. This early implementation served

as a testing ground to verify the reliability and responsiveness of the energy measurement

setup.

Building on this foundation, the same pipeline was extended and refined for TPC-DS

benchmarks, as detailed in Section 4.3. The core mechanisms—such as idle-state detection,

Spark job submission, and energy attribution based on proportional CPU usage—remain

unchanged. Both qemu and prometheus exporters from Scaphandre are used to capture

26

5.2 Measurement Pipeline

Physical Host

Scaphandre(Scaphandre monitors host-level
energy consumption (including all VMs))

Controller VM
10 vCPUs、32 GB

Worker VM
10 vCPUs、32 GB

Kubernetes Cluster (Deployed on Two
VMs)

pod

Driver Pod Executor Pods

Spark pods are deployed only in the Worker VM (executor & driver)

...

Schedules
and Starts Tasks

Execute

Cluster Mode: k8s://
Submit Spark Tasks

Execute Spark Tasks

RAPL Interface

Two exporter: qemu / prometheus
Read Energy File

Virtual
Machines

Applications

Generate VMs Via Continuum

Figure 5.1: Experimental setup: Scaphandre collects VM energy via qemu and prometheus
exporters, while Spark-on-Kubernetes runs inside a two-VM cluster.

host-level metrics, while execution segments are derived from Spark event logs and aligned

with energy samples.

For SparkPi experiment, fewer semantic phases are logged, and the workload is

lightweight and deterministic. The pipeline already supports all components of end-to-

end automation, ensuring consistency across both validation and benchmarking phases.

27

5.3 Objective and Rationale

5.3 Objective and Rationale

This experiment aims to verify whether our energy measurement pipeline can consistently

and accurately capture power and energy variations across different computational pat-

terns—specifically, changes in parallelism, load intensity, and executor distribution. We

consider the pipeline reliable if it produces interpretable energy trends that align with

known workload characteristics and scaling expectations.

To this end, we use SparkPi (3), a simple and deterministic workload that allows fine-

grained control over input complexity while minimizing I/O interference. It enables con-

trolled testing of computational stress across different scaling patterns.

We designed five representative scenarios: one idle baseline and four resource-driven

strategies (strong scaling, increasing workload, weak scaling, and distribution scaling; see

Section 3.5.1). These patterns simulate how systems behave under typical variations in

core count, task complexity, and job distribution.

The goal is not to benchmark SparkPi’s performance but to test whether our pipeline

can consistently reflect the expected energy trends. Each scenario targets a distinct stress

point, enabling us to validate whether power and energy metrics align with underlying

execution logic.

5.4 Experiment Design & Results

Based on the scaling strategies introduced in Section 3.5.1, the SparkPi validation exper-

iment was conducted under the configurations listed in Table 5.1. Each experiment is

labeled by its scaling category and parameterization. The configurations vary the number

of executor cores, allocated memory, workload size (via the number of point pairs), and

Spark executor instances to simulate different stress levels on the system.

Four key parameters control each configuration:

• Params: Indicates the workload size, defined as the number of random point pairs

generated by the SparkPi job. Larger values result in more computation and longer

task durations.

• Threads: Refers to the number of CPU cores (executor cores) allocated to each

Spark task. This simulates strong scaling behavior and affects parallel computation

capability within each executor.

28

5.5 Takeaway

Table 5.1: SparkPi Experiment Configurations
Experiment Params Threads Memory Instances Category Description
idle-baseline – –† –† –† No workload submitted; VM remained

idle with Spark environment preloaded.
Used as energy baseline.

ss-1 100,000 1 1g 1
Strong scalingss-2 100,000 2 1g 1

ss-4 100,000 4 1g 1
iw-1 50,000 2 2g 1

Increasing workloadiw-2 100,000 2 2g 1
iw-3 200,000 2 2g 1
ws-1 50,000 1 1g 1

Weak scalingws-2 100,000 1 1g 2
ws-3 200,000 1 1g 4
sp-2in 50,000 1 1g 2

Split scaling (fixed total workload)
sp-4in 25,000 1 1g 4

• Memory: Sets the per-executor memory allocation, which impacts JVM perfor-

mance and garbage collection behavior.

• Instances: Specifies how many identical Spark executors are launched simultane-

ously. This enables testing weak scaling (increasing parallelism under constant per-

task workload) and split scaling (fixed total workload split across multiple executors).

The experiment results—illustrated in Figures 5.1 to 5.3—demonstrate how energy usage

and power profiles respond to different scaling patterns. Figure 5.2 presents the aggregated

energy consumption across all SparkPi configurations. Figures 5.3 to 5.7 show the power-

over-time curves for twelve representative configurations. These plots reflect how VM

system power changes during job execution under different settings. Moreover, each plot’s

length of the x-axis also reveals each configuration’s total runtime. The detailed parameter

settings explanation for each configuration is listed in Table 5.1.

5.5 Takeaway

The SparkPi experiments offer strong evidence that our energy measurement pipeline can

reliably capture power dynamics and energy consumption across varied scaling scenarios.

Several findings support this validation:

• Baseline stability: The idle condition (idle-baseline) consumed only 1.4 J (Fig-

ure 5.2), confirming that background power draw is minimal. The corresponding

29

5.5 Takeaway

Figure 5.2: Comparison of sparkpi task energy consumption under different parameters

Figure 5.3: Power consumption of cloud0_zsong during the idle baseline phase.

power-over-time curve (Figure 5.3) remains flat between 6–9 W, establishing a clean

baseline for comparison.

• Strong scaling validation (Figure 5.4): As executor cores increase from 1 to

4 (ss-1 → ss-4), power spikes become more prominent (peak up to 80 W) and

energy consumption grows from 684.7 J to 2290.2 J—an increase of over 3.3×

(Figure 5.2). Runtime drops significantly, but energy increases—confirming expected

tradeoffs between power and time in strong scaling.

• Workload scaling sensitivity (Figure 5.5): With fixed resources (2 cores), dou-

30

5.5 Takeaway

Figure 5.4: Power consumption of cloud0_zsong across strong-scaling experiments (ss-1,
ss-2, ss-4).

bling and quadrupling the Workload (iw-1 → iw-3) results in energy rising from

873.0 J to 1446.1 J—a 1.7× increase—while maintaining steady power profiles

around 50–60 W. This shows that the pipeline correctly tracks how heavier work-

loads increase energy even when power remains relatively stable.

• Weak scaling reflection (Figure 5.6): Increasing executor instances under

fixed per-task workload results in similar per-instance power (45–55 W) but in-

creased cumulative load, with energy rising from 423.9 J (ws-1) to 1073.3 J (ws-

3)—approximately a 2.5× jump. Power curves exhibit stacked profiles as parallel

instances increase, consistent with weak scaling behavior.

• Executor distribution effect (Figure 5.7): Although the total Workload is fixed,

splitting it across more executors (sp-4in) reduces runtime (under 200s vs. 400s)

but increases peak power. Both configurations yield similar energy values around

741–747 J, validating that the pipeline accurately attributes energy in distributed

execution settings.

• Power dynamics recognition: All curves clearly capture ramp-up → sustained

load → shutdown phases. The pipeline is sensitive to short bursts and differences in

execution length—e.g., sp-4in completes in less than half the time of iw-3, which

extends beyond 800s (Figures 5.7 and 5.5).

31

5.5 Takeaway

Figure 5.5: Power consumption of cloud0_zsong across increasing workload experiments
(iw-1, iw-2, iw-3).

Figure 5.6: Power consumption of cloud0_zsong across weak-scaling experiments (ws-1,
ws-2, ws-3).

Up to this point, the SparkPi results validate the pipeline’s responsiveness to different

stress patterns, its ability to preserve runtime variance, and its accuracy in quantifying

both total energy and temporal power fluctuations. The insights serve as a confidence

32

5.5 Takeaway

Figure 5.7: Power consumption of cloud0_zsong across split-scaling experiments (sp-2in,
sp-4in).

foundation for applying the same pipeline to the more complex, multi-phase TPC-DS

workloads in the next chapter.

33

6

Evaluation

This chapter evaluates the energy behavior of analytical workloads using the TPC-DS

benchmark on Spark. Building on the validated measurement framework introduced ear-

lier, we shift focus to more realistic and complex workloads representative of real-world

data analytics pipelines. The goal is to understand how resource allocation strategies and

query characteristics impact energy consumption across a variety of configurations.

In modern analytics infrastructure, engines like Apache Spark are widely used to power

business intelligence, forecasting, and operational reporting (21). These platforms are

designed to scale with more cores, more memory, and increased parallelism, promising

faster results and higher throughput. But at what cost?

As organizations scale out their workloads, the energy required to answer even routine

business questions—such as “What products sold best last week?” or “Which customers are

likely to churn?”—can rise significantly. With cloud providers charging for both compute

time and power usage and with sustainability becoming a growing priority, understanding

these energy implications has become more than a theoretical concern.

In this chapter, we take a systems-level view of Spark-based analytics. Instead of focusing

on abstract compute benchmarks, we turn to the TPC-DS workload—a representative suite

of SQL queries used in real data platforms. Our goal is to understand how different ways

of allocating resources, distributing tasks, or writing queries impact the system’s overall

energy footprint. As shown in Table 6.1, each query is run under controlled variations of

resource scale, parallelism, and task distribution.

We ask: Is it always better to run jobs faster with more cores? What happens when

multiple queries are batched? Can smarter query planning reduce power usage without

sacrificing performance? These are the kinds of trade-offs that system designers and data

34

6.1 Experimental Setup (for TPC-DS Experiments)

engineers face daily—and this chapter seeks to surface those dynamics through careful

measurement and comparison.

Our analysis in this chapter targets the following research questions:

• RQ2: What benchmark workloads and configuration parameters can be selected to

meaningfully characterize the diversity of energy behaviors in such systems?

• RQ3: What practical insights can be derived from energy measurement experiments

to support more sustainable design and deployment of data-intensive systems?

To operationalize these questions, we examine five concrete sub-questions:

• Does increasing computing resources always lead to better energy effi-

ciency?(Section 6.2)

• When system resources are fixed, how does increasing load affect power pat-

terns?(Section 6.3)

• Can increased parallelism across multiple instances improve energy efficiency, or in-

troduce new overheads?(Section 6.4)

• Is it more efficient to split the same workload across more workers?(Section 6.5)

• How does the structure and complexity of a query influence its energy footprint under

the same system configuration?(Section 6.6)

To answer these questions, we analyze energy behavior across five configuration types.

Each group corresponds to a specific scaling strategy and is evaluated using two perspec-

tives: (1) total energy consumption (via bar charts with error bars) and (2) instantaneous

power dynamics (via power-phase plots). The following sections first describe the exper-

imental setup used to conduct these analyses, and then present key findings and insights

from the evaluation of different scaling strategies and workload types.

6.1 Experimental Setup (for TPC-DS Experiments)

Building on the validated setup described in Chapter 5, the TPC-DS experiments inherit

the same measurement environment while focusing on energy dynamics of analytical SQL

workloads. This ensures continuity while shifting the focus to more complex analytical

workloads.

35

6.1 Experimental Setup (for TPC-DS Experiments)

The TPC-DS benchmark emphasizes energy behavior under varying resource constraints

during SQL query execution. To isolate query-related energy consumption, the experimen-

tal design reuses a fixed dataset and metadata, and only the query phase is executed in

each run. The setup is designed to observe how different Spark configurations affect energy

use across various query types.

Static Data and Metadata Reuse

Before executing the benchmark, a one-time setup phase generates a 10 GB synthetic

dataset using Spark’s TPC-DS data generator and creates all required metadata tables.

These are stored under the /tpcds-data/ directory, which is mounted into the worker VM

via shared hostPath. This setup ensures that subsequent query executions incur no I/O or

compute overhead from table creation, allowing energy measurements to reflect the query

phase exclusively.

Workload Configurations and Scaling Dimensions

Each experiment is defined by a tuple of parameters: the specific SQL query used (se-

lected from TPC-DS official queries q1 to q99), the number of Spark executors, cores per

executor, memory per executor, and the number of parallel instances. These parameters

are varied systematically according to the scaling categories introduced in Section 3.5.1.

Rather than repeating each configuration multiple times, the experiments are designed

so that each setup has comparative value. Different configurations are grouped into log-

ical families, enabling the contrastive analysis of energy usage patterns. The full list of

experiment settings is presented in Table 6.1.

Query Execution and Phase-Specific Energy Attribution

To extract fine-grained energy metrics, only the query execution phase is performed in

each experiment. Spark’s event logging feature is enabled to capture detailed runtime

traces, which are later parsed by a custom Python script to analyze execution behavior at

the stage level.

This script processes Spark event logs in JSON format and extracts submission and

completion timestamps for each stage. It then uses a semantic parsing function to iden-

tify the operation performed (e.g., Scan, Join, Aggregate, etc.) based on RDD scope

metadata and stage names. A rule-based classification function assigns each stage to a

semantic phase, with support for distinguishing operations such as Exchange, Init(Map),

or TakeOrdered.

Once all stages are classified, the script aggregates the duration of each semantic phase

and retrieves total energy consumption from host-level Scaphandre logs. Energy is then

36

6.2 Type 1: Strong Scaling — Does increasing computing resources always
lead to better energy efficiency?

Table 6.1: Experiment Matrix for TPC-DS Query q3-v2.4 and Variants

Type Setting Executors Cores/Exec. Memory/Exec.

Strong Scaling (Fixed Load, Increased Resources)
T1-1 Minimal parallelism 1 1 4g
T1-2 Moderate scale-up 2 2 6g
T1-3 Single exec., higher cores 1 4 8g
T1-4 Balanced multi-executor

config
2 3 6g

Resource Saturation (Fixed Resources, Increasing Repeats)
T2 Constant 2x2 config with 6g

mem
2 2 6g

Weak Scaling (Increased Resources with Problem Size)
T3 1 to 4 executors, each 2 cores 1–4 2 4g

Distributed Execution (Same Load, More Executors)
T4-1 All-in-one config 1 6 12g
T4-2 Split across 2 executors 2 3 6g
T4-3 Split across 3 executors 3 2 4g

Query Horizontal Comparison (Same Config, Varying Queries)
T5 q5, q18, q64 2 2 6g

proportionally allocated across phases based on their timeshare. The final output includes

a printed summary and a visualized bar chart of energy usage per phase.

This approach provides phase-specific attribution of total energy consumed per exper-

iment, enabling detailed insight into how different operations contribute to the overall

energy footprint of each query configuration.

6.2 Type 1: Strong Scaling — Does increasing computing
resources always lead to better energy efficiency?

Experimental Design. In this setting, the workload remains fixed while computing

resources are incrementally scaled up. The configurations include varying core counts and

executor setups—from a single-core executor to multiple executors with more cores and

memory. This simulates real-world questions around capacity planning: “Should I assign

more resources to the same job to complete it faster and potentially save energy?”

37

6.2 Type 1: Strong Scaling — Does increasing computing resources always
lead to better energy efficiency?

Figure 6.1: Energy Consumption with Error Bars for Strong Scaling Configurations (T1-1
to T1-4)

Rather than isolating individual parameters (e.g., only changing the core count or mem-

ory), the strong scaling setups reflect realistic deployment scenarios where multiple resource

dimensions are typically adjusted together. For example, increasing executor count often

comes with changes in memory allocation or task distribution in practice. While this design

does not offer single-variable control, it enables the comparison of representative resource

upgrade paths and captures practical system behavior under realistic scale-up strategies.

This approach also aligns with how Spark is tuned in production—via co-tuning of cores,

memory, and parallelism levels to balance efficiency and throughput.

Energy Comparison. Figure 6.1 presents the total energy consumption for the four

strong scaling configurations. Surprisingly, energy usage does not consistently decrease

with more computing resources. While T1-3 (1 exec × 4 cores) achieves the lowest energy

(≈ 125.5 J), T1-2 (2 execs × 2 cores) results in the highest energy consumption (≈ 154.7

J). T1-1 (the most minimal setup) and T1-4 (balanced multi-executor) fall in the middle.

This irregular pattern highlights the nonlinear trade-offs in strong scaling: more resources

may reduce runtime, but also increase idle periods or coordination overheads.

Power Pattern Analysis. The time-series power plots reveal how different resource

configurations affect power behavior during each query phase. Notably, larger configu-

rations tend to complete phases more quickly but may exhibit higher peak power usage.

Figures 6.4 show the power trends over time for T1-1 and T1-3 respectively. T1-1 exhibits

a relatively lower power profile (mostly under 70W), but sustains this over a long duration

38

6.2 Type 1: Strong Scaling — Does increasing computing resources always
lead to better energy efficiency?

(≈67s), while T1-3 sees higher power peaks (up to 90W) but finishes much faster (≈45s).

The net result is a lower total energy for T1-3, confirming that shorter execution time with

higher instantaneous power can be more efficient.

Startup Phase Interpretation. In all power plots, the initial segment labeled as
“P1: Startup” corresponds to Spark’s system-level initialization before any computa-
tional stages begin. This phase typically includes driver setup, executor registration,
block manager initialization, and job planning, as inferred from Spark event logs. This
conclusion is based on our analysis of Spark event logs, which record fine-grained times-
tamps and metadata for each system and job-level event before stage execution begins.
Although no data processing occurs during this phase, it incurs measurable energy
consumption and can last for 20–30 seconds depending on the experiment configs. All
subsequent figures follow this convention for consistent interpretation.

Insights. These results have several practical implications: In real-world Spark deploy-

ments, increasing resource allocation may not always result in improved energy efficiency.

Our findings show that T1-2, despite having more executors than T1-1, consumed the

most energy—suggesting that distributed coordination overhead can offset the benefits of

parallelism.

Moreover, T1-3 shows that a more concentrated configuration (fewer executors with

more cores) can be both faster and more energy-efficient, even with higher peak power.

This counters the intuitive assumption that high power is always wasteful—short bursts

of intensive computing can be greener overall.

Such findings often carry important implications for cloud-based workloads, where au-

toscaling and serverless models typically charge based on both runtime and resource usage.

They also illustrate the classic diminishing returns problem in strong scaling: once the

problem size is fixed, adding more resources often leads to marginal runtime improvement

at disproportionate energy cost.

These observations naturally lead to the next question: when system resources are fixed,

how does increasing workload complexity affect energy patterns? To explore this, we turn

to the second group of experiments (T2), where the query is executed repeatedly under

identical resource constraints but with increasing load.

39

6.3 Type 2: Fixed Resources with Increasing Load — How does load
intensity affect energy behavior when system capacity is constrained?

(a) T1-1 (1 exec × 1 core)

(b) T1-3 (1 exec × 4 cores)

Figure 6.4: Phase-wise power pattern comparison in Type 1: T1-1 vs. T1-3.

6.3 Type 2: Fixed Resources with Increasing Load — How
does load intensity affect energy behavior when system
capacity is constrained?

Experimental Design. In this group, the hardware configuration remains constant—2

executors, each with two cores and 6GB of memory—while the workload complexity in-

creases by repeating the same query multiple times. This setup reflects common real-

world limitations, especially in cost-conscious or shared environments where adding more

resources is not always possible. It also mimics periodic workloads of different scales, such

40

6.3 Type 2: Fixed Resources with Increasing Load — How does load
intensity affect energy behavior when system capacity is constrained?

Figure 6.5: Energy Consumption with Error Bars (T2-1, T2-2, T2-3)

as daily, weekly, or monthly analytical jobs processed on a fixed infrastructure.

Energy Comparison. Figure 6.5 compares total energy consumption across increasing

workload sizes. As expected, energy usage increases with heavier workloads: T2-1 (6

repeats) consumes ≈202.8 J, T2-2 (12 repeats) rises to ≈238.1 J, and T2-3 (18 repeats)

peaks at ≈265.3 J. However, the growth is not strictly linear: the energy increase from

T2-2 to T2-3 (≈27.2 J) is smaller than from T2-1 to T2-2 (≈35.3 J), suggesting a possible

diminishing return effect.

Power Pattern Analysis. The phase-aligned power traces (e.g., Figure 6.8) show that

increasing the number of query executions results in denser distributions of high-power

stages. Interestingly, while the peak power remains relatively stable across T2-1 through

T2-3 (≈95–100W), the duration of elevated power consumption extends noticeably. This

implies that Spark, under fixed resources, does not aggressively scale instantaneous power

per task but rather stretches the job timeline to accommodate heavier loads. This behavior

may resemble a form of resource backpressure—i.e., the system continues to execute tasks

at roughly the same intensity but queues or staggers their execution over time. Still, such

interpretations should be treated with caution, as they rely on indirect inference rather

than explicit profiling data.

Insights. These results point to several interesting patterns. As workload size increases

under a fixed resource setting, total energy use naturally rises. However, the energy cost

per unit of work decreases with scale, hinting at efficiency gains when grouping smaller

41

6.3 Type 2: Fixed Resources with Increasing Load — How does load
intensity affect energy behavior when system capacity is constrained?

(a) T2-3 (large scale)

(b) T2-1 (small scale)

Figure 6.8: Phase-wise power trends under fixed-resource scaling: comparison between T2-3
and T2-1.

analytical tasks into batches. This batching effect may help distribute fixed costs—such

as task scheduling and I/O initialization—more effectively.

Moreover, in cloud environments with burstable pricing, energy quotas, or thermal

throttling, understanding how workload length impacts power duration—rather than peak

power—can help developers better control total cost and system stability. Selecting batch

sizes that align with the system’s stable power envelope can lead to more predictable

performance and energy profiles.

Another observation is the stable peak power across T2-1 to T2-3 despite increasing

workload. This suggests that Spark maintains consistent execution intensity per core,

42

6.4 Type 3: Weak Scaling — Does parallelization help maintain energy
efficiency as workloads grow?

with larger workloads mainly extending the active runtime rather than increasing instan-

taneous demand. While this behavior offers predictability, it also opens up new avenues for

optimization—such as smarter task scheduling, memory reuse, or adaptive planning—that

deserve further exploration.

Building on these findings, the next experiment shifts focus: rather than increasing only

the workload, we explore what happens when both the workload and available resources

grow together.

6.4 Type 3: Weak Scaling — Does parallelization help main-
tain energy efficiency as workloads grow?

Experimental Design. This experiment group evaluates weak scaling behavior, where

both workload size and computing resources increase proportionally. Specifically, the num-

ber of query repetitions is scaled with the number of executors—T3-1 runs three queries

on one executor, T3-2 runs six queries on two executors, and T3-3 runs 12 queries on four

executors. This design aims to simulate real-world settings where larger infrastructure

is provisioned to handle growing job loads, such as monthly reporting on larger clusters

compared to daily processing on smaller clusters.

Energy Comparison. Figure 6.9 summarizes total energy consumption under weak

scaling. As expected, overall energy increases with workload size, but the growth is super-

linear: T3-1 consumes ≈140.6 J, T3-2 jumps to ≈202.3 J, and T3-3 peaks at ≈321.1

J. Notably, the increase from T3-2 to T3-3 (≈+120 J) is significantly steeper than from

T3-1 to T3-2, suggesting that beyond a certain point, parallel execution may introduce

additional overheads that outweigh efficiency gains.

The phase-level energy breakdowns confirm this interpretation. In T3-1(Figure 6.12), the

Init(Map & Parallelize) stage dominates energy use (≈88 J), with Join contributing

a minor ≈21 J. In contrast, T3-3(Figure 6.12) shows a striking shift: while initialization

energy remains high (≈94.5 J), the Join stage alone consumes ≈124.1 J—nearly six times

higher than in T3-1. This phase-by-phase amplification reveals that energy inefficiency

at scale is not uniformly distributed but instead concentrates on communication-intensive

operations, such as distributed joins.

Furthermore, although the Scan and TakeOrdered stages also see absolute energy in-

creases, their growth is far less dramatic, reinforcing the role of Join as the primary driver

of overhead—and suggesting that scaling out resources without rethinking data shuffling

patterns may worsen energy performance.

43

6.4 Type 3: Weak Scaling — Does parallelization help maintain energy
efficiency as workloads grow?

Figure 6.9: Energy Consumption with Error Bars under Weak Scaling (T3-1, T3-2, T3-3).

From this, we may tentatively conclude that weak scaling in distributed systems is

especially sensitive to the nature of operations being scaled. For real-world deploy-

ments—particularly in large clusters running data-heavy SQL-like queries—optimizing join

strategies (e.g., through broadcast joins, repartition tuning, or adaptive execution) may

yield substantial and unexpected improvements in energy efficiency.

Power Pattern Analysis. Figures 6.15 illustrate the time-aligned power profiles for

the smallest and largest configurations. Although peak power does increase (T3-3 sur-

passes 100W versus 80W in T3-1), it is the extended duration of elevated power that

more significantly contributes to energy consumption. T3-3 takes ≈69.5 seconds to com-

plete, compared to T3-1’s ≈56.0 seconds, despite having four times the total core count.

This indicates diminishing parallel efficiency, where per-query performance fails to scale

proportionally with the addition of resources.

In addition, T3-3 exhibits noticeable power volatility, with sharp fluctuations aligned

with frequent and densely packed execution phases such as repeated Join and TakeOrdered

operations. The shaded overlays clearly show that power spikes correspond to shuffle-

intensive and aggregation-heavy stages, which become more fragmented and frequent as

the workload is split across more tasks. This confirms that the instability is not random

but rooted in execution structure—specifically, synchronization points, stage barriers, and

load imbalance across executors become more pronounced as parallelism increases.

Insights. These weak scaling results shed light on a familiar trade-off: pushing for

44

6.4 Type 3: Weak Scaling — Does parallelization help maintain energy
efficiency as workloads grow?

(a) T3-1

(b) T3-3

Figure 6.12: Energy distribution by phase under weak scaling: Join surge in T3-3 highlights
scaling bottleneck.

higher throughput does not always go hand in hand with efficient energy use. Spark and

similar frameworks are designed for scalable parallelism, but simply adding more workers

does not guarantee improved performance or energy savings—especially when jobs involve

extensive data shuffling or uneven task loads.

45

6.4 Type 3: Weak Scaling — Does parallelization help maintain energy
efficiency as workloads grow?

(a) T3-1 (small scale)

(b) T3-3 (large scale)

Figure 6.15: Phase-wise power trends under weak scaling: comparison between T3-3 and
T3-1.

From a system design standpoint, the results serve as a reminder of the downside of

over-provisioning. Take T3-3, for example—it uses the most resources but turns out to be

the least energy-efficient per query run. This likely stems from the additional overhead

required to coordinate tasks and manage communication between nodes. This pattern

echoes real-world challenges in the industry, where scaling out too far often results in

diminishing returns due to executor churn, network bottlenecks, or imbalanced workloads.

Interestingly, a comparison with Type 2 offers further nuance: while both types increased

workload size, Type 2 maintained constant resource allocation and exhibited smoother

power usage growth. Type 3, in contrast, added resources along with load and incurred

46

6.5 Type 4: Fixed Total Load, Split Across Workers — Can distributing a
fixed workload across more workers reduce energy usage?

sharply rising energy costs—revealing the hidden inefficiencies of uncontrolled parallelism.

What if the workload remains constant, but we distribute it across a larger number of

workers? We investigate this in Type 4.

6.5 Type 4: Fixed Total Load, Split Across Workers — Can
distributing a fixed workload across more workers reduce
energy usage?

Experimental Design. In practical scenarios—such as executing ad hoc analytical

queries over a known dataset—engineers often face a resource allocation dilemma: should

available computing power be consolidated into a few large executors or distributed across

smaller ones? This experiment explores that question. All configurations process the same

workload exactly once but with varying degrees of parallelism: T4-1 uses one executor with

six cores, T4-2 splits this into two executors with three cores each, and T4-3 uses three

executors with two cores each.

Energy Comparison. As shown in Figure 6.16, total energy consumption rises as

the workload is spread across more executors: T4-1 consumes approximately 126.5 J, T4-

2 increases to 154.8 J, and T4-3 reaches 181.1 J. The most significant increase occurs

between T4-1 and T4-2, indicating that the introduction of multi-executor coordination

incurs a steep initial energy overhead. The growth continues from T4-2 to T4-3, albeit

with a smaller marginal cost, suggesting a diminishing energy efficiency as parallelism

scales up. This pattern reflects the rising cost of task scheduling, shuffle communication,

and coordination that can outweigh the benefit of reduced load per executor.

Power Pattern Analysis. Figures 6.19 further illustrates this overhead. While the

execution time remains nearly the same across configurations (≈42–45s), T4-3 exhibits a

noticeably higher and more sustained power profile—peaking above 100W compared to

90W in T4-1. This indicates that increasing the number of executors elevates baseline

power usage without reducing runtime.

Additionally, the power curve of T4-3 is more irregular, with sharper fluctuations between

stages. This suggests the need for more frequent inter-executor communication and finer-

grained task transitions. That is, the workload is split into smaller units, but the added

synchronization effort prevents any significant performance gain—resulting in higher energy

expenditure.

47

6.6 Workload-Specific Energy Insights

Figure 6.16: Energy consumption across T4 configurations.

Insights. When the total workload is fixed, increasing the number of executors can

degrade energy efficiency. Our results show that additional parallelism may lead to unnec-

essary coordination overhead, especially when the job is not CPU-bound. For users running

medium-scale Spark workloads, consolidating tasks onto fewer, more powerful executors

can reduce communication costs and lower total energy usage. This insight is useful for

systems that need to operate within tight energy, thermal, or budget limits.

6.6 Workload-Specific Energy Insights

From Section 6.2 to Section 6.5, we examined how energy consumption varies with differ-

ent resource configurations using a fixed query—q3. This query serves as our baseline

workload, as it integrates a balanced mix of data initialization, scan, and join operations

and avoids extreme computational skew. As such, it provides a stable reference point for

evaluating resource-based scaling strategies without introducing variability from the query

logic itself.

However, production-scale analytics seldom rely on a single representative query. In

real-world use cases—such as TPC-DS benchmark deployments, dashboard aggregations,

or report generation pipelines—workloads can vary dramatically in structure. To better

understand this variation, we expand the investigation to compare queries with diverse

logical structures but executed under identical cluster settings.

48

6.6 Workload-Specific Energy Insights

(a) T4-1 (single executor with 6 cores)

(b) T4-3 (three executors with 2 cores each)

Figure 6.19: Phase-wise power trends in fixed-load split execution: T4-1 vs. T4-3.

We selected q5, q18, and q64 from the TPC-DS benchmark to reflect three common

workload types encountered in practice. These queries represent contrasting execution

plans: q5 emphasizes joins and group-by aggregations, q18 is dominated by table scans, and

q64 contains both wide scans and deep aggregations. This selection enables a structured

comparison across common SQL workload archetypes seen in enterprise and cloud-based

analytics. Our goal is to assess how different workload structures manifest in energy

usage and which operations contribute most to power draw and inefficiency.

49

6.6 Workload-Specific Energy Insights

Figure 6.20: Total energy consumption across workloads: T1-2 (q3), T5-q5, T5-q18, and
T5-q64.

6.6.1 Total Energy Consumption and Phase Breakdown

Figure 6.20 shows substantial disparities in total energy use despite identical hardware:

• T1-2 (q3): ≈154.7 J

• T5-q18: ≈196.3 J

• T5-q5: ≈403.9 J

• T5-q64: ≈498.3 J

We can clearly see that the energy consumption differs by more than 3× between the

lightest and heaviest queries, suggesting that the choice of workload structure itself is a

major factor influencing overall energy use.

Phase-wise breakdowns (Figures 6.23 and Figures 6.26) reveal the source of these gaps:

• q3 (T1-2): Energy is concentrated in Init(Map & Parallelize) and Scan, with a

modest Join.

• q18 (T5-q18): Almost exclusively scan-driven, with ≈130 J on Scan, and no Join or

Exchange overhead—showing that queries with minimal coordination remain energy-

light.

50

6.6 Workload-Specific Energy Insights

(a) T1-2 (q3 baseline)

(b) T5-q5

Figure 6.23: Phase-wise energy usage: T1-2 (q3 baseline) vs. T5-q5.

• q5 (T5-q5): Combines ≈130 J on Scan, ≈29 J on Join, and ≈28 J on Exchange,

representing the energy cost of combining joins with shuffle-heavy grouping logic.

• q64 (T5-q64): Has a dual energy peak: ≈232 J on Scan and ≈184 J on Exchange,

with moderate join cost. This suggests that wide shuffles and large intermediate

51

6.6 Workload-Specific Energy Insights

(a) T5-q18

(b) T5-q64

Figure 6.26: Phase-wise energy usage: T5-q18 vs. T5-q64.

result sets are key contributors to high-energy draw.

From these results, we can preliminarily find that it is not the number of joins alone

that drives energy usage, but the cost of shuffling and materializing large aggregates across

executors. In other words, coordination and intermediate data movement dominate energy

52

6.6 Workload-Specific Energy Insights

(a) T1-2 (q3 baseline)

(b) T5-q5

Figure 6.29: Power over time with phase highlighting: T1-2 (q3 baseline) vs. T5-q5.

overhead in complex queries.

6.6.2 Power Behavior over Time

Power traces (Figures 6.29 and Figures 6.32) further confirm this interpretation:

• q3 and q18 show smooth and moderate power curves (mostly <100W) with short,

consistent durations (≈47s and ≈51s).

• q5 and q64 display higher peak power (often >100W), longer durations (≈91s and

≈107s), and highly jagged power profiles. These fluctuations align with frequent

53

6.6 Workload-Specific Energy Insights

(a) T5-q18

(b) T5-q64

Figure 6.32: Power over time with phase highlighting: T5-q18 vs. T5-q64.

query stage transitions—particularly Exchange and Aggregate phases.

This means that complex workloads not only cost more energy in Aggregate but also

create thermal and power management challenges due to sustained and volatile power

usage patterns.

6.6.3 Insights and Practical Takeaways

Even when compute resources are held constant, query structure alone can lead to over

300% variation in energy usage. Lightweight scan-oriented queries like q18 are inherently

54

6.7 Threat to Validity

more predictable and efficient. In contrast, queries with wide joins and complex aggre-

gations, such as q5 and q64, become disproportionately energy-intensive—not because of

runtime alone, but due to data movement and coordination overheads.

To mitigate these effects, engineers should not rely solely on hardware scaling or cluster

tuning. Instead, query-level optimizations can yield significant energy benefits. These

include reducing shuffle width, applying early filters to minimize intermediate volume,

using broadcast joins when applicable, and enabling adaptive query plans to avoid over-

provisioning during execution.

From a system design perspective, this suggests that energy-aware planning must be

built into query optimizers, particularly in shared or cloud-hosted analytics platforms.

Developers and operators alike need to consider not just how fast a query runs but how

efficiently it uses power to do so.

6.7 Threat to Validity

While we took several precautions to ensure measurement accuracy, a few limitations are

worth noting.

Our experiments were conducted on virtual machines generated via the Continuum

framework, which ran on a shared physical host. Although we avoided scheduling overlap-

ping jobs, other VMs—either from our setup or from unrelated users—may have introduced

background noise. This is especially relevant for power measurements taken with Scaphan-

dre, which reports the total energy usage of the host, not individual VMs. Even lightweight

activity from monitoring services or SSH sessions could have slightly skewed the results,

particularly for short or low-power workloads.

To reduce this effect, we ensured that all non-essential VMs were shut down during key

experiments, and the experiment controller script enforced a minimum of 95% host CPU

idleness before launching the next run. Idle baselines were also executed on clean VMs

with Spark fully disabled. Still, some fluctuations in idle power were observed, likely due

to the nature of virtualized environments and the cumulative nature of host-level metrics

reported by Scaphandre.

Another limitation relates to the way we attributed power to individual query stages.

Since Scaphandre does not offer container- or VM-level breakdowns, we aligned times-

tamped application logs with host-level energy deltas to estimate the energy consumption

per stage. These estimates were further refined using the CPU usage proportion of each

VM at runtime. While this method provides reasonably accurate approximations, it is

55

6.7 Threat to Validity

less precise for very short or overlapping execution phases, where power changes are more

volatile, and attribution is more ambiguous.

We did not benchmark alternative power measurement tools, such as PowerAPI, nor did

we explore different configurations for Scaphandre startup or file-sharing mechanisms, like

switching from virtiofsd to 9p1. The current setup focused on stability and reproducibility

across runs, but it is possible that other measurement setups could have affected precision

or consistency in small ways.

Lastly, all VMs in our experiments used identical resource configurations, including the

same number of cores and memory. This choice helped ensure fair comparisons between

configurations, but it limits generalization to more heterogeneous production environments.

Our experiments were also constrained by limited hardware capacity, preventing us from

scaling up to larger datasets or more complex cluster topologies. Nevertheless, the observed

patterns offer a useful insight into the energy behavior of representative workloads.

19p is a lightweight file-sharing protocol originally developed for the Plan 9 operating system. It is
used in virtualized environments to share files between host and guest with minimal overhead.

56

7

Related Work

To contextualize our work within the broader field of energy-aware big data processing,

this chapter reviews relevant literature across three areas that underpin the design of

our framework. We first examine how energy is monitored in virtualized and containerized

environments, then turn to studies of Spark’s energy behavior, and finally highlight gaps in

current benchmarking methodologies. These strands of research inform both the technical

underpinnings and the practical motivation for our proposed Spark-on-Kubernetes energy

benchmarking pipeline.

7.1 Energy Monitoring Techniques in Virtualized and Con-
tainerized Environments

Measuring energy consumption is fundamental to evaluating the efficiency of big data sys-

tems. Among the most commonly used tools are on-chip measurement interfaces, such as

Intel’s Running Average Power Limit (RAPL) counters, which offer high temporal reso-

lution and easy integration into a range of workloads (27). These tools have been widely

adopted in both academic research and industry.

However, when it comes to virtualized or container-based environments, the situation

becomes less straightforward. Khargharia et al. (20) proposed a hierarchical model to

capture energy usage across hardware, operating system, and application layers. However,

in multi-tenant cloud settings, the model’s complexity increases substantially. Other stud-

ies highlight that in virtualized environments, attributing power usage to individual VMs

or containers remains a significant challenge due to the shared hardware and abstraction

layers at the OS level (4).

57

7.2 Energy Behavior of Spark Workloads

To address these difficulties, a range of lightweight energy monitoring tools have been

introduced, including PowerAPI, Intel Power Gadget, and Scaphandre. While some of

these tools were initially designed for physical machines or require privileged system access,

recent developments have improved their applicability to virtualized and containerized

settings. Among them, Scaphandre stands out for its support of Prometheus-compatible

exporters and its ability to function in KVM/QEMU environments, making it a promising

candidate for non-intrusive monitoring in modern cloud-native workloads. These tools

provide the technical foundation for our reproducible benchmarking pipeline, which builds

on Scaphandre to capture energy metrics within Spark-on-Kubernetes clusters.

7.2 Energy Behavior of Spark Workloads

The energy performance of big data frameworks, such as Hadoop and Spark, has received

considerable attention over the years. Spark, in particular, benefits from its in-memory

processing capabilities, which can reduce energy consumption under certain types of work-

loads when compared to Hadoop (10). Building on this, further studies have explored how

job characteristics, resource allocation policies, and scheduling strategies influence Spark’s

energy footprint (26).

However, a notable gap is that much of this work centers on traditional deployment

modes such as standalone or YARN. Spark-on-Kubernetes, though increasingly adopted

in modern infrastructures, has seen limited investigation in this context. While there are

efforts to evaluate Spark’s energy use in virtualized setups (24), these often lack structured

benchmarks and detailed phase-level breakdowns. Tools like HiBench and BigDataBench

offer general-purpose benchmarks but typically fall short in providing automation or track-

ing energy use across different stages of workload execution in containerized environments.

7.3 Gaps in Reproducible Benchmarking Frameworks

Despite increasing interest in optimizing Spark for better energy efficiency, many existing

studies lack a strong emphasis on reproducibility and transparency. For example, Jokanovic

et al. (19) highlight how variations in access patterns can affect energy use, a factor that

is frequently overlooked. Other studies also tend to neglect system-level context—such as

idle power baselines, thermal throttling behavior, or CPU quota constraints—which can

significantly affect measurement accuracy.

58

7.3 Gaps in Reproducible Benchmarking Frameworks

Recent work also highlights a shortage of modular benchmarking pipelines capable of pro-

filing energy consumption across various workload stages, including data generation, train-

ing, and inference. Many evaluations are either performed manually or rely on hardware-

specific setups, making it challenging to reproduce experiments or compare results across

different platforms (19).

Our research addresses these challenges by developing an automated, modular bench-

marking pipeline designed explicitly for Spark-on-Kubernetes environments. The frame-

work includes synchronized power monitoring, idle baseline detection, and per-phase work-

load analysis. By integrating Prometheus with Scaphandre, we provide a lightweight and

extensible solution for energy benchmarking that works across diverse deployment settings

and facilitates reproducible experiments.

59

8

Lessons Learned

Throughout the development of the energy measurement framework, several unexpected

technical challenges emerged—many of which could have been mitigated with more fore-

sight, scope definition, or better tooling decisions. This section summarizes key lessons

learned during the setup, deployment, and debugging of the Spark-on-Kubernetes bench-

marking environment.

8.1 Spark Environment Configuration is Nontrivial and
Error-prone

One of the most time-consuming components of the entire framework was configuring the

Spark runtime environment on Kubernetes. The process involved building custom Docker

images, configuring authentication tokens, setting up service accounts, manually importing

CA certificates, and establishing secure communication between the Spark client and the

Kubernetes API server. Despite Spark’s support for Kubernetes, numerous edge cases

required careful manual intervention.

Errors such as authorization failures, certificate mismatches, and misconfigured resource

requests were common. For instance, the job submission process would silently fail if

the Spark driver could not authenticate with the API server due to missing or outdated

certificate authorities. Solving this required manual extraction and installation of the CA

certificate into the Java trust store on the submission node—a step not documented clearly

in standard Spark guides.

While the final automation pipeline encapsulated these steps reliably, achieving a working

configuration required extensive trial and error. The experience highlights how container

orchestration support in Spark remains nontrivial and can become a bottleneck unless

60

8.2 Misassumptions About Scaphandre’s Capabilities Delayed Progress

every infrastructure step is validated beforehand. Future work would benefit from building

templated scripts and reducing dependency on manual steps to streamline this setup phase.

8.2 Misassumptions About Scaphandre’s Capabilities De-
layed Progress

Another major source of delay stemmed from an early misassumption: that Scaphandre

could directly measure the power consumption of virtual machines from within the VM

itself. Initial efforts focused on installing and running Scaphandre in Prometheus-exporter

mode inside each guest VM. However, the resulting metrics remained static or zero, leading

to confusion and wasted debugging time.

In parallel, further complications arose when attempting to synchronize Scaphandre

versions across the host and VM. The expected version (v1.0.0) could not be installed using

the official ‘.deb‘ packages—despite explicitly downloading versioned URLs, the installer

silently deployed outdated binaries (e.g., v0.0.5). The issue was only resolved by compiling

Scaphandre from the source manually, which further added to the setup complexity.

Eventually, after consulting official documentation and community forums, it became

clear that Scaphandre’s most reliable usage in virtualized environments is via its ‘qemu‘

exporter, running on the host. This mode captures per-VM telemetry by monitoring

virtual energy files associated with each virtual machine (VM). Coupled with Prometheus

power readings from the host and proportional CPU usage, the framework could then

approximate per-VM power over time with acceptable accuracy.

8.3 Continuum VM Failures Require Full Rebuilds—Robust
Initialization is Crucial

A structural limitation of the Continuum framework is its dependence on QEMU-based vir-

tual machines, which cannot be incrementally recovered after crash events. This limitation

became especially problematic during large-scale experiments involving heavy Spark work-

loads. When resource configurations exceeded available memory (e.g., oversized datasets

or under-provisioned executors), virtual machines would frequently crash or hang. Un-

like cloud-based environments with recovery mechanisms, Continuum offers no rollback or

snapshot support.

As a result, every VM crash necessitated a full rebuild of the affected node, followed

by manual reinstallation and reconfiguration of Spark, certificates, data generators, and

61

8.3 Continuum VM Failures Require Full Rebuilds—Robust Initialization
is Crucial

monitoring tools. These repetitive tasks consumed considerable time and introduced in-

consistency risks between runs.

To mitigate this, a reliable, script-driven reinitialization process was developed. It au-

tomated the restoration of Spark binaries, Docker containers, CA certificates, and experi-

mental scripts. This tooling proved essential for restoring experimental consistency, but it

also exposed a structural weakness in the infrastructure design: the lack of fault-tolerant

virtual machine (VM) provisioning.

Going forward, experiments built on fragile virtual infrastructures should prioritize

scriptable initialization and strict resource controls to avoid catastrophic failures. Even

better, adopting infrastructure snapshots or containerized workloads with persistent states

would offer significantly more resilience and repeatability.

62

9

Conclusion

This chapter synthesizes the findings from Chapter 5 and Chapter 6 to answer the research

questions posed in Section 1.3. Drawing from both the SparkPi validation and TPC-

DS benchmark experiments, we reflect on the framework’s capability, its experimental

coverage, and the practical takeaways for sustainable system design.

9.1 RQ1: How can a scalable and reproducible framework be
designed to measure the energy consumption of Spark-
based big data workloads running on Kubernetes?

To address RQ1, we developed a modular and extensible framework that integrates a

QEMU-based VM orchestration layer (Continuum), a dual-mode energy telemetry system

using Scaphandre, and a fully automated pipeline for task execution and measurement.

This framework supports scripted cluster reset, idle detection, task submission, and post-

processing—ensuring reproducibility across heterogeneous workloads and configurations.

Energy data is collected at the host level using Scaphandre’s ‘qemu‘ and ‘Prometheus‘

exporters. Since Scaphandre cannot natively report per-VM energy usage, we approximate

VM-level power using proportional CPU usage and align it with stage-level Spark events.

Although indirect, this estimation method consistently reveals temporal and aggregate

energy trends, allowing for phase-level attribution.

The SparkPi experiments validated this approach by demonstrating stable and inter-

pretable energy curves across five types of scaling scenarios, confirming the pipeline’s re-

sponsiveness to different resource patterns and its tolerance to noise and runtime variance.

Building on this foundation, the TPC-DS experiments stress-tested the framework under

63

9.2 RQ2: What benchmark workloads and configuration parameters can be
selected to meaningfully characterize the diversity of energy behaviors in

such systems?

realistic and heterogeneous query workloads. These workloads introduced multi-stage exe-

cution plans, shuffle-intensive joins, and varying memory footprints, allowing us to evaluate

the framework’s accuracy, resolution, and generalizability.

By offering automated deployment, per-phase attribution, and compatibility with re-

alistic workloads, this framework directly addresses the main challenge identified in this

thesis: the lack of a robust, modular, and reproducible framework for measuring energy

consumption in containerized, virtualized Spark environments. It provides an operational

foundation for future work on energy-aware system design, workload planning, and bench-

marking under repeatable and extensible conditions.

9.2 RQ2: What benchmark workloads and configuration pa-
rameters can be selected to meaningfully characterize the
diversity of energy behaviors in such systems?

We addressed RQ2 by combining two levels of benchmark design: scaling configurations

and workload structures, to provide an initial characterization of energy behavior diversity.

On the configuration side, we designed four types of scaling scenarios for the TPC-DS

workload, each targeting a distinct dimension of system behavior. These configurations

demonstrated how parallelism, resource fragmentation, and coordination overheads impact

total energy and power fluctuations. For example, Type 3 revealed how scaling out can in-

troduce significant overhead when query logic involves shuffles or joins—e.g., a 6× increase

in Join energy from T3-1 to T3-3. Type 4 exposed how executor fragmentation (T4-3) can

increase power usage despite no runtime improvement due to the costs of synchronization

and communication.

On the workload side, we compared queries q3, q5, q18, and q64 under identical resource

setups. These were chosen to reflect canonical analytical patterns: lightweight scans,

shuffle-heavy group-bys, and multi-phase aggregations. The results showed that query

structure alone—without any change in cluster setup—can cause a more than threefold

difference in energy usage. For instance, q64 reached nearly 500J while q18 consumed just

under 200J.

The most informative configuration-query combinations include:

• T3-3 (Weak Scaling with q3) — illustrates diminishing returns and overhead

growth at scale;

64

9.3 RQ3: What practical insights can be derived from energy measurement
experiments to support more sustainable design and deployment of

data-intensive systems?

• T4-3 (Split Scaling with q3) — reveals energy penalties of executor fragmenta-

tion;

• T5-q64 vs. T5-q18 — demonstrates how workload structure alone determines

energy footprint.

These combinations meaningfully characterize energy behavior diversity by covering mul-

tiple dimensions: execution scale, task granularity, and logical complexity. Future work

could extend this characterization by incorporating a broader range of queries and config-

uration variations to achieve more comprehensive coverage.

9.3 RQ3: What practical insights can be derived from energy
measurement experiments to support more sustainable
design and deployment of data-intensive systems?

The TPC-DS experiments revealed several patterns that inform energy-aware deployment

strategies:

Workload parallelization does not always translate to improved efficiency. For example,

in strong scaling (T1), adding more executors sometimes led to increased energy due to

underutilization and coordination overhead. Similarly, split scaling (T4) demonstrated

that distributing a fixed job across more executors increased total power without yielding

runtime gains.

Workload complexity is a major factor. Even with identical resources, queries like q64

and q5 incurred substantially higher energy due to deep aggregations and shuffle operations.

This suggests that optimizing query plans—e.g., reducing intermediate data volume and

enabling adaptive execution—can offer significant energy savings.

Temporal power patterns also revealed that joins and exchanges are responsible for most

power fluctuations and inefficiencies. For example, the Join phase in T3-3 contributed

nearly 40% of total energy, indicating that shuffle-heavy stages should be treated as opti-

mization targets in green computing initiatives.

In conclusion, energy optimization should be adapted to different workload contexts.

When system resources are limited, grouping multiple queries into batches can improve

energy efficiency by reducing the overhead of repeated task scheduling and initialization.

For fixed workloads, avoiding over-fragmentation—such as splitting jobs across too many

small executors—can prevent unnecessary coordination costs. For complex queries with

large joins or aggregations, energy can be significantly reduced by optimizing execution

65

9.4 Future Work

plans to minimize shuffle width and intermediate data volume. In Spark-based systems,

applying different combinations of the above strategies according to specific scenarios can

effectively balance performance and energy efficiency.

9.4 Future Work

This thesis establishes a modular and reproducible benchmarking framework tailored for

Spark-on-Kubernetes workloads. Future work can extend this foundation in several direc-

tions. First, the architecture can be generalized to support other data processing platforms

such as Hadoop and Flink, as well as GPU-accelerated workloads that exhibit different ex-

ecution patterns and energy profiles. Adapting the pipeline to these systems will require

adjustments in telemetry integration and workload staging, but the core automation logic

can remain consistent.

Another promising direction involves enhancing the granularity of energy attribution.

While current estimations rely on host-level monitoring and CPU usage ratios, integrating

pod-level telemetry would enable more precise phase-level profiling across containers. This

could improve the fidelity of energy diagnostics, especially in mixed-workload clusters.

Moreover, validating the framework in production-like settings with realistic job schedul-

ing, resource contention, and multi-tenant workloads would help assess its robustness and

external applicability. Finally, future experiments could focus on controlled variable analy-

sis—isolating specific configuration parameters under strong scaling scenarios—to quantify

their direct influence on power and energy. Such experiments would provide deeper insight

into the causal mechanisms behind resource-energy tradeoffs, ultimately supporting more

targeted and sustainable deployment strategies.

66

Appendix A

Reproducibility

A.1 Abstract

This appendix describes the experimental artifacts developed in this thesis to support

reproducibility. The entire benchmarking framework, including automated environment

setup, workload submission, and power data collection, is publicly available via GitHub.

The framework is designed to be executed in Linux-based virtualized environments and

produces synchronized power-over-time plots and aggregated energy metrics. It enables

researchers to replicate the results presented in Chapter 5 and Chapter 6, and to further

customize the pipeline for new workloads or system configurations.

A.2 Artifact check-list (meta-information)

• Algorithm: Not applicable

• Program: Python, Bash

• Compilation: None (interpreted scripts)

• Transformations: Not applicable

• Binary: No

• Model: None

• Data set: Synthetic (TPC-DS generated)

• Run-time environment: Ubuntu 22.04 LTS, QEMU/KVM, Kubernetes 1.28, Docker
24.0, Spark 3.4.4, Prometheus, Scaphandre

• Hardware: x86-64 Linux machine with virtualization support

• Run-time state: Single-node VM cluster

• Execution: Fully scripted (Bash + Python automation)

67

A.3 Description

• Metrics: Instantaneous power, cumulative energy, task duration

• Output: PNG plots and TXT logs

• Experiments: SparkPi and TPC-DS scaling/query scenarios

• How much disk space required (approximately)?: 15 GB

• How much time is needed to prepare workflow (approximately)?: 20 minutes
(with VM rebuild)

• How much time is needed to complete experiments (approximately)?: 2–4 hours
depending on configuration

• Publicly available?: Yes

• Code licenses (if publicly available)?: MIT

• Data licenses (if publicly available)?: TPC-DS license

• Workflow framework used?: Continuum (custom script-based)

• Archived (provide DOI)?: Not archived (GitHub only)

A.3 Description

A.3.1 How to access

The entire artifact is hosted on GitHub at: https://github.com/Ellies1/thesis01

This repository includes the benchmarking framework, installation scripts, workload

definitions, and result generation code.

A.3.2 Hardware dependencies

The framework must be run on a Linux host machine with virtualization support (Intel

VT-x or AMD-V), at least four physical cores, and 16 GB RAM. No specific GPU or

hardware sensors are required, but qemu must be available.

A.3.3 Software dependencies

• Host OS: Ubuntu 22.04 LTS

• Virtualization: QEMU + KVM

• Containerization: Docker 24.0

• Orchestration: Kubernetes 1.28

• Benchmarking tools: Apache Spark 3.4.4

68

https://github.com/Ellies1/thesis01

A.4 Installation

• Energy monitoring: Scaphandre (with qemu and Prometheus exporters)

• Monitoring: Prometheus, Python 3.10+, matplotlib

A.3.4 Data sets

The TPC-DS dataset is generated within the script using Spark’s built-in data generator

at 10 GB scale. No external datasets are required.

A.3.5 Models

Not applicable.

A.4 Installation

Clone the repository and follow the README.md instructions. The main installation entry

point is:

bash remote-setup-every.sh

This script automates VM creation, Spark configuration, Kubernetes cluster setup, and

energy exporter initialization. No manual installation is needed.

A.5 Experiment workflow

After installation, execute benchmark experiments using:

python3 TPCDSEC616/v2.py

This script handles the full experimental pipeline:

• Reset cluster to a clean state

• Wait for idle energy stabilization

• Submit workload to Kubernetes (SparkPi or TPC-DS queries)

• Collect and timestamp energy metrics via Scaphandre

• Generate power-over-time plots and energy summary figures

All outputs are stored in the /output directory in both .png and .txt formats.

69

A.6 Evaluation and expected results

A.6 Evaluation and expected results

The expected results include:

• PNG figures showing power fluctuation during different execution phases

• TXT logs recording cumulative energy per stage/query

• Validation plots for five SparkPi scenarios

• Energy comparison charts across TPC-DS configurations and queries

These outputs should match the trends and insights reported in Chapter 6. Some vari-

ability may occur due to runtime noise, but the overall energy patterns should remain

reproducible.

A.7 Experiment customization

To run different queries or configurations, modify the experiment_configs inside v2.py.

Users may specify:

• Number of executors

• Core/memory per executor

• TPC-DS query name

• Experiment repeat times

New workloads can be added by modifying the pipeline logic and tagging stages in the

Spark logs.

A.8 Notes

The framework is primarily designed for academic research. It may require elevated priv-

ileges to run virtual machines and access /dev/kvm. Ensure proper kernel modules are

enabled on the host.

70

A.9 Methodology

A.9 Methodology

Submission and reviewing of reproducibility materials follow the ACM guidelines:

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

71

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

References

[1] Tpc benchmark™ ds. Transaction Processing Performance Council, 2024. Available at

http://www.tpc.org/tpcds/. 9, 16

[2] Abukari, A. M., Nimatu, S., and Madavarapu, J. B. Comparative analy-

sis of virtualization and containerization: Performance perspective. Department of

Computer Science, Tamale Technical University, Ghana; Department of Information

Technology, University of the Cumberlands, USA. 3

[3] Apache Software Foundation. Apache spark examples: Sparkpi. https://

spark.apache.org/examples.html, 2025. Accessed: 2025-05-11. 5, 9, 28

[4] Basmadjian, R., Meer, H. D., and Lent, R. Evaluation of power monitoring

techniques for data centers. IEEE Transactions on Sustainable Computing 1, 2 (2013),

100–112. 57

[5] Buyya, R., Ilager, S., and Arroba, P. Energy-efficiency and sustainability in

new generation cloud computing: A vision and directions for integrated management

of data centre resources and workloads. Software: Practice and Experience 53, 4

(2023), 1–20. 1, 2

[6] Cloud Native Computing Foundation. Cncf research reveals how cloud native

technology is reshaping global business and innovation, 2025. Available at: https:

//www.cncf.io/reports/. 1

[7] Freels, A. Learn how to monitor your energy use at home with a rasp-

berry pi, grafana and prometheus. https://grafana.com/blog/2021/04/15/

learn-how-to-monitor-your-energy-use-at-home-with-a-raspberry-pi-grafana-and-prometheus/,

2021. Accessed: 2025-05-15. 3

72

http://www.tpc.org/tpcds/
https://spark.apache.org/examples.html
https://spark.apache.org/examples.html
https://www.cncf.io/reports/
https://www.cncf.io/reports/
https://grafana.com/blog/2021/04/15/learn-how-to-monitor-your-energy-use-at-home-with-a-raspberry-pi-grafana-and-prometheus/
https://grafana.com/blog/2021/04/15/learn-how-to-monitor-your-energy-use-at-home-with-a-raspberry-pi-grafana-and-prometheus/

REFERENCES

[8] Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., and

Jacobsen, H.-A. Bigbench: towards an industry standard benchmark for big data

analytics. In Proceedings of the 2013 ACM SIGMOD International Conference on

Management of Data (New York, NY, USA, 2013), SIGMOD ’13, Association for

Computing Machinery, p. 1197–1208. 16

[9] Henning, S., and Hasselbring, W. Benchmarking scalability of stream processing

frameworks deployed as microservices in the cloud. arXiv preprint arXiv:2303.11088

(2023). 2

[10] Huang, Y., and Buyya, R. A comparative study of energy-efficient scheduling

in hadoop and spark. Journal of Parallel and Distributed Computing 72, 11 (2012),

1374–1386. 58

[11] Hubblo. Qemu exporter - scaphandre documentation. https://hubblo-org.

github.io/scaphandre-documentation/references/exporter-qemu.html. Ac-

cessed: 2025-05-23. 26

[12] Hubblo. Scaphandre: Energy consumption monitoring agent, by process, with

prometheus export. https://github.com/hubblo-org/scaphandre, 2020. Accessed:

2025-05-11. 4, 26

[13] Hubblo. Explanation on rapl / running average power limit domains: what we (think

we) know so far. https://hubblo-org.github.io/scaphandre-documentation/

explanations/rapl-domains.html, 2023. Accessed: 2025-05-22. 3, 26

[14] Hubblo. How Scaphandre computes per process power consumption, 2025. Online;

accessed 2025-05-02. 3, 4, 8

[15] Hunter, J. D. Matplotlib: A 2d graphics environment. Computing in Science

Engineering 9, 3 (2007), 90–95. 5

[16] Intel-bigdata. Hibench: A big data benchmark suite. https://github.com/

Intel-bigdata/HiBench. Accessed: 2025-05-23. 16

[17] International Energy Agency. AI is set to drive surging electricity demand from

data centres while offering the potential to transform how the energy sector works,

Apr. 2025. Online; accessed 2025-04-10. 1

73

https://hubblo-org.github.io/scaphandre-documentation/references/exporter-qemu.html
https://hubblo-org.github.io/scaphandre-documentation/references/exporter-qemu.html
https://github.com/hubblo-org/scaphandre
https://hubblo-org.github.io/scaphandre-documentation/explanations/rapl-domains.html
https://hubblo-org.github.io/scaphandre-documentation/explanations/rapl-domains.html
https://github.com/Intel-bigdata/HiBench
https://github.com/Intel-bigdata/HiBench

REFERENCES

[18] Jansen, M. Continuum: Experimental research automation for distributed systems.

https://github.com/atlarge-research/continuum, 2023. Accessed: 2025-05-11. 8,

25

[19] Jokanovic, B., and Gelenbe, E. Impact of access patterns on energy consumption

in big data systems. In Proc. of IEEE BigData (2016). 58, 59

[20] Khargharia, B., and Smith, J. E. A hierarchical energy measurement framework

for distributed systems. In Proc. of IEEE IPDPS (2010). 57

[21] Poess, M., Nambiar, R. O., and Walrath, D. Why you should run tpc-ds: a

workload analysis. In Proceedings of the 33rd International Conference on Very Large

Data Bases (2007), VLDB ’07, VLDB Endowment, p. 1138–1149. 34

[22] Prometheus Authors. Prometheus: Monitoring system & time series database.

https://prometheus.io/, 2012. Accessed: 2025-05-22. 4, 26

[23] Savazzi, S., Rampa, V., Kianoush, S., and Bennis, M. An energy and

carbon footprint analysis of distributed and federated learning. arXiv preprint

arXiv:2206.10380 (2022). 2

[24] Tang, Z., Chen, W., and Rao, J. Spark energy evaluation in virtualized environ-

ments. In Proc. of ACM EuroSys (2022). 58

[25] Vennu, V. K., and Yepuru, S. R. A performance study for autoscaling big data

analytics containerized applications. Master’s thesis, Blekinge Institute of Technology,

2022. iii, 2

[26] Wang, W., Liu, J., and He, T. Energy-aware scheduling in apache spark: A case

study. In Proc. of IEEE GreenCom (2021). 58

[27] Wang, X., Wang, Y., and Pedram, M. Energy measurement and modeling for

rapl in intel cpus. In Proc. of ISLPED (2019). 57

[28] Wang, Y., and Wang, Y. The impact of digital infrastructure on innovation and

economic growth. Journal of Innovation & Knowledge 7, 1 (2012), 1–10. 1

[29] Wikipedia contributors. Climate Neutral Data Centre Pact, 2025. Wikipedia,

The Free Encyclopedia. Online; accessed 2025-05-02. 1

[30] Zhu, C., Han, B., and Zhao, Y. A comparative performance study of spark on

kubernetes. The Journal of Supercomputing 78, 11 (2022), 13298–13322. iii, 2, 4

74

https://github.com/atlarge-research/continuum
https://prometheus.io/

	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Research Methodology
	1.5 Thesis Contributions
	1.6 Plagiarism Declaration
	1.7 Thesis Structure

	2 Background
	2.1 Reproducible Deployment with Continuum
	2.2 Energy Monitoring with Scaphandre
	2.3 Benchmarking Targets: From Synthetic to Realistic Workloads

	3 Design of the Energy Benchmarking Framework
	3.1 Design Requirements
	3.1.1 Functional Requirements (FQ)
	3.1.2 Non-Functional Requirements (NFQ)

	3.2 System Overview
	3.3 System Architecture and Monitoring Pipeline
	3.4 Automated Benchmark Workflow and Execution Control
	3.5 Benchmark Construction and Workload Characterization
	3.5.1 Design of Resource Configuration Parameters
	3.5.2 Systematic Query Selection Strategy

	4 Implementation
	4.1 VM Setup
	4.2 Energy Monitoring
	4.3 Benchmarking Pipeline
	4.4 Data Post-processing and Visualisation
	4.5 Data Volume Mounting and Hive Integration

	5 SparkPi-based Energy Measurement Validation
	5.1 Experimental Setup
	5.1.1 Software Stack

	5.2 Measurement Pipeline
	5.3 Objective and Rationale
	5.4 Experiment Design & Results
	5.5 Takeaway

	6 Evaluation
	6.1 Experimental Setup (for TPC-DS Experiments)
	6.2 Type 1: Strong Scaling — Does increasing computing resources always lead to better energy efficiency?
	6.3 Type 2: Fixed Resources with Increasing Load — How does load intensity affect energy behavior when system capacity is constrained?
	6.4 Type 3: Weak Scaling — Does parallelization help maintain energy efficiency as workloads grow?
	6.5 Type 4: Fixed Total Load, Split Across Workers — Can distributing a fixed workload across more workers reduce energy usage?
	6.6 Workload-Specific Energy Insights
	6.6.1 Total Energy Consumption and Phase Breakdown
	6.6.2 Power Behavior over Time
	6.6.3 Insights and Practical Takeaways

	6.7 Threat to Validity

	7 Related Work
	7.1 Energy Monitoring Techniques in Virtualized and Containerized Environments
	7.2 Energy Behavior of Spark Workloads
	7.3 Gaps in Reproducible Benchmarking Frameworks

	8 Lessons Learned
	8.1 Spark Environment Configuration is Nontrivial and Error-prone
	8.2 Misassumptions About Scaphandre’s Capabilities Delayed Progress
	8.3 Continuum VM Failures Require Full Rebuilds—Robust Initialization is Crucial

	9 Conclusion
	9.1 RQ1: How can a scalable and reproducible framework be designed to measure the energy consumption of Spark-based big data workloads running on Kubernetes?
	9.2 RQ2: What benchmark workloads and configuration parameters can be selected to meaningfully characterize the diversity of energy behaviors in such systems?
	9.3 RQ3: What practical insights can be derived from energy measurement experiments to support more sustainable design and deployment of data-intensive systems?
	9.4 Future Work

	A Reproducibility
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.3.1 How to access
	A.3.2 Hardware dependencies
	A.3.3 Software dependencies
	A.3.4 Data sets
	A.3.5 Models

	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Notes
	A.9 Methodology

	References

